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Abstract

Affect Control Theory (ACT) is a mathematical
model that makes accurate predictions about hu-
man behaviour across a wide range of settings.
The predictions, which are derived from statistics
about human actions and identities in real and
laboratory environments, are shared prescriptive
and affective behaviours that are believed to lead
to solutions to everyday cooperative problems. A
generalisation of ACT, called BayesAct, allows
the principles of ACT to be used for human-
interactive agents by combining a probabilistic
version of the ACT dynamical model of affect
with a utility function encoding external goals.
Planning in BayesAct, which we address in this
paper, then allows one to go beyond the affective
prescription, and leads to the emergence of more
complex interactions between “cognitive” and
“affective” reasoning, such as deception leading
to manipulation and altercasting. We use a con-
tinuous variant of a successful Monte-Carlo tree
search planner (POMCP) that dynamically dis-
cretises the action and observation spaces while
planning. We give demonstrations on two classic
two-person social dilemmas.

1 INTRODUCTION

BayesAct [4, 20, 21, 22] is a partially-observable Markov
decision process (POMDP) model of affective interactions
between a human and an artificial agent. BayesAct is based
upon a sociological theory called “Affect Control The-
ory” (ACT) [16], but generalises this theory by modeling
affective states as probability distributions, and allowing
decision-theoretic reasoning about affect. BayesAct posits
that humans will strive to achieve consistency in shared af-
fective cultural sentiments about events, and will seek to
increase alignment (decrease deflection) with other agents
(including artificial ones). Importantly, this need to align

implicitly defines an affective heuristic (a prescription1) for
making decisions quickly within interactions. Agents with
sufficient resources can do further planning beyond this
prescription, possibly allowing them to manipulate other
agents to achieve individual profit in collaborative games.

BayesAct arises from the symbolic interactionist tradition
in sociology and proposes that humans learn and maintain
a set of shared cultural affective sentiments about people,
objects, behaviours, and about the dynamics of interper-
sonal events. Humans use a simple affective mapping to
appraise individuals, situations, and events as sentiments
in a three dimensional vector space of evaluation (good
vs. bad), potency (strong vs. weak) and activity (active
vs. inactive). These mappings can be measured, and the
culturally shared consistency has repeatedly been demon-
strated to be extremely robust in large cross-cultural stud-
ies [17, 29]. Many believe this consistency “gestalt” is a
keystone of human intelligence. Humans use it to make
predictions about what others will do, and to guide their
own behaviour. The shared sentiments, and the resulting
affective ecosystem of vector mappings, encodes a set of
social prescriptions that, if followed by all members of a
group, results in an equilibirium or social order [14] which
is optimal for the group as a whole, rather than for individ-
ual members. Humans living at the equilibrium “feel” good
and want to stay there. The evolutionary consequences of
this individual need are beneficial for the species.

Nevertheless, humans are also a curious, crafty and devi-
ous bunch, and often use their cortical processing power to
go beyond these prescriptions, finding individually bene-
ficial strategies that are still culturally acceptable, but that
are not perfectly normative. This delicate balance is main-
tained by evolution, as it is beneficial for the species to
avoid foundering within a rigid set of rules. In this pa-
per, starting from the principles of BayesAct, we investi-
gate how planning beyond cultural prescriptions can result
in deceptive or manipulative strategies in two-player social
dilemma games. To handle the continuous state, action and
observation spaces in BayesAct, we use a Monte-Carlo tree

1We prefer prescription, but also use norm, although the latter
must not be mis-interpreted as logical rules (see Section 5).



search (MCTS) algorithm that dynamically clusters obser-
vations and actions, and samples actions from the BayesAct
prescriptions as a distribution over the action space.

This paper makes two contributions. First, it describes how
to use MCTS planning in BayesAct, and gives arguments
for why this is an appropriate method. This idea was only
hinted at in [22]. Second, it shows how this planning can
lead to realistic and manipulative behaviours in the pris-
oner’s dilemma and battle of the sexes games.

2 BACKGROUND

2.1 Partially Observable Markov Decision Processes

A partially observable Markov decision process
(POMDP) [1] is a stochastic control model that con-
sists of a finite set S of states; a finite set A of actions;
a stochastic transition model Pr : S × A → ∆(S), with
Pr(s′|s, a) denoting the probability of moving from state s
to s′ when action a is taken, and ∆(S) is a distribution over
S; a finite observation set Ωs; a stochastic observation
model, Pr(ωs|s), denoting the probability of making
observation ωs ∈ Ωs while the system is in state s; and a
reward assigning R(a, s′) to a transition to s′ induced by
action a. A policy maps belief states (i.e., distributions
over S) into actions, such that the expected discounted
sum of rewards is (approximately) maximised. We use
factored POMDPs in which the state is represented by the
cross-product of a set of variables or features. POMDPs
have been used as models for many human-interactive
domains, including assistive technologies [19].

2.2 Affect Control Theory

Affect Control Theory (ACT) arises from work on the psy-
chology and sociology of human social interaction [16].
ACT proposes that social perceptions, behaviours, and
emotions are guided by a psychological need to minimize
the differences between culturally shared fundamental af-
fective sentiments about social situations and the transient
impressions resulting from the interactions between ele-
ments within those situations. Fundamental sentiments,
f , are representations of social objects, such as interac-
tants’ identities and behaviours, as vectors in a 3D affec-
tive space, hypothesised to be a universal organising prin-
ciple of human socio-emotional experience [29]. The ba-
sis vectors of affective space are called Evaluation/valence,
Potency/control, and Activity/arousal (EPA). EPA profiles
of concepts can be measured with the semantic differen-
tial, a survey technique where respondents rate affective
meanings of concepts on numerical scales with opposing
adjectives at each end (e.g., good, nice vs. bad, awful for
E, weak, little vs. strong, big for P, and calm, passive vs.
exciting, active for A). Affect control theorists have com-
piled lexicons of a few thousand words along with aver-
age EPA ratings obtained from survey participants who are
knowledgeable about their culture [17]. For example, most

English speakers agree that professors are about as nice as
students (E), more powerful (P) and less active (A). The
corresponding EPAs are [1.7, 1.8, 0.5] for professor and
[1.8, 0.7, 1.2] for student2. In Japan, professor has the same
P (1.8) but students are seen as less powerful ( 0.21).

The three dimensions were found by Osgood to be ex-
tremely robust across time and cultures. More recently
these three dimensions are also thought to be related di-
rectly to intrinsic reward [12]. That is, it seems that reward
is assessed by humans along the same three dimensions:
Evaluation roughly corresponds with expected value, Po-
tency with risk (e.g. powerful things are more risky to
deal with, because they do what they want and ignore
you), and Activity corresponds roughly with uncertainty,
increased risk, and decreased values (e.g. faster and more
excited things are more risky and less likely to result in
reward) [12]. Similarly, Scholl argues that the three dimen-
sions are in correspondence with the major factors govern-
ing choice in social dilemmas [33]. Evaluation is a measure
of affiliation or correspondence between outcomes: agents
with similar goals will rate each other more positively. Po-
tency is a measure of dependence: agents who can reach
their goals independently of other agents are more power-
ful. Activity is a measure of the magnitude of dependence:
agents with bigger payoffs will tend to be more active.

Social events can cause transient impressions, τ (also three
dimensional in EPA space) of identities and behaviours that
may deviate from their corresponding fundamental senti-
ments, f . ACT models this formation of impressions from
events with a grammar of the form actor-behaviour-object.
Consider for example a professor (actor) who yells (be-
haviour) at a student (object). Most would agree that this
professor appears considerably less nice (E), a bit less po-
tent (P), and certainly more aroused (A) than the cultural
average of a professor. Such transient shifts in affective
meaning caused by specific events are described with mod-
els of the form τ ′ = MG (f ′, τ ), where M is a matrix
of statistically estimated prediction coefficients from em-
pirical impression-formation studies and G is a vector of
polynomial features in f ′ and τ . In ACT, the weighted sum
of squared Euclidean distances between fundamental senti-
ments and transient impressions is called deflection, and is
hypothesised to correspond to an aversive state of mind that
humans seek to avoid. This affect control principle allows
ACT to compute prescriptive actions for humans: those
that minimize the deflection. Emotions in ACT are com-
puted as a function of the difference between fundamentals
and transients [16], and are thought to be communicative
signals of vector deflection that help maintain alignment
between cooperative agents. ACT has been shown to be
highly accurate in explaining verbal behaviours of mock
leaders in a computer-simulated business [34], and group
dynamics [18], among others [27].

2 All EPA labels and values in the paper are taken from the
Indiana 2002-2004 ACT lexicon [17]. Values range by historical
convention from −4.3 to +4.3.



2.3 Bayesian Affect Control Theory

Recently, ACT was generalised and formulated as a
POMDP for human-interactive artificially intelligent sys-
tems [22]. This new model, called BayesAct, generalises
the original theory in three ways. First, sentiments and im-
pressions are viewed as probability distributions over latent
variables (e.g., f and τ ) rather than points in the EPA space,
allowing for multimodal, uncertain and dynamic affective
states to be modeled and learned. Second, affective inter-
actions are augmented with propositional states and actions
(e.g. the usual state and action space considered in AI ap-
plications). Third, an explicit reward function allows for
goals that go beyond simple deflection minimization. We
give a simplified description here; see [21, 22] for details.

A BayesAct POMDP models an interaction between two
agents (human or machine) denoted agent and client. The
state, s, is the product of six 3-dimensional continuous
random variables corresponding to fundamental and tran-
sient sentiments about the agent’s identity (Fa,Ta), the
current (agent or client) behaviour (Fb,Tb) and the client’s
identity (Fc,Tc). We use F = {Fa,Fb,Fc} and T =
{Ta,Tb,Tc}. The state also contains an application-
specific set of random variables X that are interpreted as
propositional (i.e. not affective) elements of the domain
(e.g. whose turn it is, game states - see Section 4), and
we write s = {f , τ ,x}. Here the turn is deterministic
(agent and client take turns), although this is not necessary
in BayesAct. The BayesAct reward function is application-
specific over x. The state is not observable, but observa-
tions Ωx and Ωf are obtained for X and for the affective
behaviour Fb, and modeled with probabilistic observation
functions Pr(ωx|x) and Pr(ωf |fb), respectively.

Actions in the BayesAct POMDP are factored in two parts:
ba and a, denoting the affective and propositional compo-
nents, respectively. For example, if a tutor gives a hard
exercise to do, the manner in which it is presented, and
the difficulty of the exercise, combine to form an affective
impression ba that is communicated. The actual exercise
(content, difficulty level, etc) is the propositional part, a.

The state dynamics factors into three terms as Pr(s′|s,ba,a)=

Pr(τ ′|τ ,f ′,x)Pr(f ′|f ,τ ,x,ba)Pr(x
′|x,f ′,τ ′,a), and the funda-

mental behaviour, Fb, denotes either observed client or
taken agent affective action, depending on whose turn it is
(see below). That is, when agent acts, there is a determin-
istic mapping from the affective component of his action
(ba) to the agent’s behaviour Fb. When client acts, agent
observes Ωf (the affective action of the other agent). The
third term in the factorization of the state dynamics is the
Social Coordination Bias, and is described in Section 2.4.
Now we focus on the first two terms.

The transient impressions, T, evolve according to the
impression-formation operator in ACT (MG ), so that
Pr(τ ′|...) is deterministic. Fundamental sentiments are ex-
pected to stay approximately constant over time, but are
subject to random drift (with noise Σf ) and are expected

to also remain close to the transient impressions because of
the affect control principle. Thus, the dynamics of F is3:

Pr(f ′|f , τ ) ∝ e−ψ(f
′,τ )−ξ(f ′,f) (1)

where ψ ≡ (f ′−MG (f ′, τ ))TΣ−1(f ′−MG (f ′, τ )) com-
bines the affect control principle with the impression for-
mation equations, assuming Gaussian noise with covari-
ance Σ. The inertia of fundamental sentiments is ξ ≡
(f ′−f)TΣ−1f (f ′−f), where Σf is diagonal with elements
βa, βb, βc. The state dynamics are non-linear due to the
features in G . This means that the belief state will be
non-Gaussian in general, and BayesAct uses a bootstrap fil-
ter [11] to compute belief updates.

The distribution in (1) gives the prescribed (if agent turn),
or expected (if client turn), action as the component f ′b of
f ′. Thus, by integrating over f ′a and f ′c and the previous
state, we obtain a probability distribution, π†, over f ′b that
acts as a normative action bias: it tells the agent what to
expect from other agents, and what action is expected from
it in belief state b(s):

π†(f ′b) =

∫
f ′a,f
′
c

∫
s

Pr(f ′|f , τ ,x)b(s) (2)

2.4 BayesAct Instances

As affective identities (fa, fc) are latent (unobservable)
variables, they are learned (as inference) in the POMDP.
If behaving normatively (according to the normative ac-
tion bias), an agent will perform affective actions ba =
arg maxf ′b

π†(f ′b) that allow other agents to infer what his
(true) identity is. The normative action bias (NAB) de-
fines an affective signaling mechanism as a shared set of
prescriptions for translating information about identity into
messages. In BayesAct, the NAB is given by Equation (2).

The NAB is only prescriptive: all agents are free to select
individually what they really send, allowing for deception
(e.g. “faking” an identity by sending incorrect informa-
tion in the affective dimension of communication). Possi-
ble outcomes are manipulation (the other agent responds
correctly, as its own identity, to the “fake” identity), and al-
tercasting (the other agent assumes a complementary iden-
tity to the faked identity, and responds accordingly), both
possibly leading to gains for the deceptive agent.

The dynamics of X is given by Pr(x′|f ′, τ ′,x, a), that we
refer to as the social coordination bias (SCB): it defines
what agents are expected to do (how the state is expected to
change, including other agents’ propositional behaviours)
in a situation x when action a was taken that resulted in
sentiments f ′ and τ ′. For example, we may expect faster
student learning if deflection is low, as cognitive resources
do not need to be spent dealing with mis-alignment.

The SCB is a set of shared rules about how agents, when
acting normatively, will behave propositionally (action a,

3We leave out the dependence on x for clarity, and on ba

since this is replicated in f ′b.



as opposed to affectively with action ba). Assuming iden-
tities are correctly inferred (as insured by the shared nature
of the NAB), each agent can both recognize the type of
the other agent and can thereby uncover an optimistic pol-
icy4 that leads to the normative mean accumulated future
reward (as defined by the social coordination bias). How-
ever, with sufficient resources, an agent can use this pre-
scribed action as a heuristic only, searching for nearby ac-
tions that obtain higher individual reward. For example, a
teacher who seems very powerful and ruthless at the start of
a class, often may choose to do so (in a way that would be
inappropriate in another setting, e.g., the home, but is ap-
propriate within the classroom setting) in order to establish
a longer-term relationship with her students. The teacher’s
actions feel slightly awkward if looked at in the context of
the underlying social relationship with each student (e.g.
as would be enacted according to normative BayesAct), but
are leading to longer-term gains (e.g. the student passes).

Thus, the NAB (along with a communication mechanism)
allows the relaying of information about identity, while the
SCB allows agents to make predictions about other agents’
future actions given the identities. This combination al-
lows agents to assume cooperative roles in a joint task, and
is used as an emotional “fast thinking” heuristic (Kahne-
man’s “System 1” [23]). If agents are fully cooperative and
aligned, then no further planning is required to ensure goal
achievement. Agents do what is expected (which may in-
volve planning over X, but not F and T), and expect others
to as well. However, when alignment breaks down, or in
non-cooperative situations, then slower, more deliberative
(“System 2”) thinking arises. The Monte-Carlo method in
Section 3 naturally trades-off slow vs. fast thinking.

3 POMCP-C

POMCP [36] is a Monte-Carlo tree search algorithm for
POMDPs that progressively builds a search tree consisting
of nodes representing histories and branches representing
actions or observations. It does this by generating samples
from the belief state, and then propagating these samples
forward using a blackbox simulator (the known POMDP
dynamics). The nodes in the tree gather statistics on the
number of visits, states visited, values obtained, and action
choices during the simulation. Future simulations through
the same node then use these statistics to choose an action
according to the UCB1 formula, which adds an exploration
bonus to the value estimate based on statistics of state visits
(less well-visited states are made to look more salient or
promising). Leaves of the tree are evaluated using a set of
rollouts: forward simulations with random action selection.
The key idea is that fast and rough rollouts blaze the trail for
the building of the planning tree, which is more carefully
explored using the UCB1 heuristic. POMCP uses a timeout
(processor or clock time) providing an anytime solution.

4optimistic in the sense that it assumes all agents will also
follow the same normative policy.

In our algorithm, POMCP-C, we make use of an action
bias, πheur: a probability distribution over the action space
that guides action choices5. In BayesAct, we naturally have
such a bias: the normative action bias (for ba) and the
social coordination bias (for a). At each node encoun-
tered in a POMCP-C simulation (at history h), an action-
observation pair is randomly sampled as follows. First, a
random sample is drawn from the action bias, a ∼ πheur.
The action a is then compared to all existing branches at
the current history, and a new branch is only created if it is
significantly different, as measured by distance in the ac-
tion space (Euclidean for ba, binary for a) and a threshold
parameter δa (‘action resolution’), from any of these exist-
ing branches. If a new branch is created, the history ha is
added to the planning tree, and is evaluated with a rollout as
usual. If a new branch is not created, then a random sample
o is drawn from the observation distribution Pr(o|h, a)6.

The continuous observation space raises two significant
problems. First, the branching factor for the observations
is infinite, and no two observations will be sampled twice.
To counter this, we use a dynamic discretisation scheme
for the observations, in which we maintain o(h), a set
of sets of observations at each history (tree node). So
o(h) = {o1,o2, . . . ,oNo}, where No ∈ N. A new ob-
servation o is either added to an existing set oj if it is close
enough to the mean of that set (i.e. if |o − ōj| < δo where
δo is a constant, the ‘observation resolution’), or, if not, it
creates a new set oNo+1 = {o}. This simple scheme allows
us to dynamically learn the observation discretisation.

The second problem raised by continuous observations
stems from the fact that POMCP uses a black box simu-
lator that should draw samples from the same distribution
as the environment does. Thus, the simulated search tree
replicates actual trajectories of belief, and can be re-used
after each action and observation in the real world (after
each pruning of the search tree). This works for discrete
observations, but it may not work for continuous observa-
tions since the same observation will rarely be encountered
twice. Here, we prune the tree according to the closest ob-
servation set oj to the observation obtained (see also [4]).

4 EXPERIMENTS AND RESULTS

We present highlights of results on two social dilemmas.
Full results and other experiments are in [4].

4.1 Prisoner’s Dilemma (Repeated)

The prisoner’s dilemma is a classic two-person game in
which each person can either defect by taking $1 from a
(common) pile, or cooperate by giving $10 from the same
pile to the other person. There is one Nash equilibrium in
which both players defect, but when humans play the game

5The idea of using a heuristic to guide action selection in
POMCP was called preferred actions [36].

6POMCP-C also uses a cut-off Nmax
A on the branching factor.



they often are able to achieve the optimal solution where
both cooperate. A rational agent would first compute the
strategy for the game as the Nash equilibrium (of “defect”),
and then look up the affective meaning of such an action
using e.g. a set of appraisal rules, and finally apply a set
of coping rules. For example, such an agent might figure
out that the goals of the other agent would be thwarted,
and so that he should feel ashamed or sorry for the other
agent. However, appraisal/coping theories do not specify
the probabilities of emotions, do not take into account the
affective identities of the agents, and do not give consistent
accounts of how coping rules should be formulated.

Instead, a BayesAct agent (called a pd-agent for brevity
here), computes what affective action is prescribed in the
situation (given his estimates of his and the other’s identi-
ties, and of the affective dynamics), and then seeks the best
propositional action (a ∈ {cooperate, defect}) to take that
is consistent with this prescribed affect. As the game is re-
peated, the pd-agent updates his estimates of identity (for
self and other), and adjusts his play accordingly. For ex-
ample, a player who defects will be seen as quite negative,
and appropriate affective responses will be to defect, or to
cooperate and give a nasty look.

The normative action bias (NAB) for pd-agents is the usual
deflection minimizing affective fb given distributions over
identities of agent and client (Equation 2). Thus, if agent
thought of himself as a friend (EPA:{2.75, 1.88, 1.38})
and knew the other agent to be a friend, the deflec-
tion minimizing action would likely be something good
(high E). Indeed, a simulation shows that one would
expect a behaviour with EPA= {1.98, 1.09, 0.96}, with
closest labels such as treat or toast. Intuitively, co-
operate seems like a more aligned propositional action
than defect. This intuition is confirmed by the dis-
tances from the predicted (affectively aligned) behaviour
to collaborate with (EPA:{1.44, 1.11, 0.61}) and abandon
(EPA:{ 2.28, 0.48, 0.84}) of 0.4 and 23.9, respectively.
Table 1 shows all combinations if each agent could also be
a scrooge (EPA:{ 2.15, 0.21, 0.54}). We see that a friend
would still collaborate with a scrooge (in an attempt to re-
form the scrooge), a scrooge would abandon a friend (look
away from in shame), and two scrooges would defect.

The agent will predict the client’s behavior using the same
principle: compute the deflection minimising affective ac-
tion, then deduce the propositional action based on that.
Thus, a friend would be able to predict that a scrooge would
defect. If a pd-agent has sufficient resources, he could
search for an affective action near to his optimal one, but
that would still allow him to defect. To get a rough idea of
this action, we find the point on the line between his opti-
mal action {0.46, 1.14, 0.27} and abandon that is equidis-
tant from abandon and collaborate with. This point, at
which he would change from cooperation to defection, is
{ 0.8, 0.6, 0.4} (glare at), which only has a slightly higher
deflection than reform (6.0 vs 4.6). Importantly, he is not
trading off costs in the game with costs of disobeying the

ag cli optimal closest dist. from
ent ent behaviour labels coll. ab.
F F 1.98, 1.09, 0.96 treat 0.4 23.9

toast
F S 0.46, 1.14, 0.27 reform 1.7 10.5

lend money to
S F 0.26, 0.81, 0.77 curry favor 8.5 4.2

look away
S S 0.91, 0.80, 0.01 borrow money 9.6 2.7

chastise

Table 1: Optimal (deflection minimising) behaviours for
two pd-agents with fixed identities. F=friend, S=scrooge,
coll.=collaborate with, ab.=abandon

social prescriptions: his resource bounds and action search
strategy are preventing him from finding the more optimal
(individual) strategy, implicitly favoring those actions that
benefit the group and solve the social dilemma.

PD-agents are dealing with a slightly more difficult situa-
tion, as they do not know the identity of the other agent.
However, the same principle applies, and the social coor-
dination bias (SCB) is that agents will take and predict the
propositional action that is most consistent with the affec-
tive action. Agents have culturally shared sentiments about
the propositional actions (defection and cooperation), and
the distance of the deflection minimizing action (agent, ba)
or behaviour (client, fb) to these sentiments is a measure of
how likely each propositional action is to be chosen (agent
turn), or predicted (client turn). That is, on agent turn, the
affective actions ba will be sampled and combined with a
propositional action a sample drawn proportionally to the
distance from ba to the shared sentiments for each a. On
client turn, affective behaviours fb will be predicted and
combined with a value for a variable representing client
play in X drawn proportionally to the distance from fb.

We model agent and client as having two (simultaneous)
identities: friend or scrooge with probabilities 0.8 and 0.2,
respectively. Each pd-agent starts with a mixture of two
Gaussians centered at these identities with weights 0.8/0.2
and variances of 0.1. The SCB interprets cooperation as
collaborate with (EPA:{1.44, 1.11, 0.61}) and defection as
abandon (EPA:{ 2.28, 0.48, 0.84}), and the probability
of the propositional actions using a Gibbs measure over
distance with a variance of 4.0. We use propositional state
X = {Turn,Ag play, Cl play} denoting whose turn it
is (∈ {agent, client}) and agent and client state of play
(∈ {not played, cooperate, defect}). The agents’ reward is
only over the game (e.g. 10, 1, or 0), so there is no intrinsic
reward for deflection minimization as in [22]. We use a two
time-step game in which both agent and client choose their
actions at the first time step, and then communicate this to
each other on the second step. The agents also communi-
cate affectively, so that each agent gets to see both what
action the other agent took (cooperate or defect), and also
how they took it (expressed in fb)7. If one were to imple-

7Agents may also relay emotions (see Sec. 2.2), but here we
only use emotional labels for explanatory purposes.



ment this game in real life, then fb would be relayed by e.g.
a facial expression. We use a Gaussian observation func-
tion Pr(ωf |fb) with mean at fb and std. dev. of σb = 0.1.
Our simulations consist of 10 trials of 20 games/trial, but
agents use an infinite horizon with a discount γ.

We simulate one pd-agent (pdA) with a POMCP-C (pro-
cessor time) timeout value of ta, and the other (pdC) ei-
ther: (1), a similar agent with the same timeout tc = ta, or
with a timeout of tc = 1s; or (2), a fixed strategy agent that
plays one of: (co) always cooperate; (de) always defect; (tt)
tit-for-tat; (to): two-out; (t2): tit-for-two-tat; (2t): two-tit-
for-tat. Except for (de), these fixed strategy agents always
cooperate on the first turn, and then: (tt) mirrors the other
agent; (to) cooperates twice, then always defects; (t2): de-
fects if the other agent defects twice in a row; (2t): coop-
erates if the other agent cooperates twice in a row8. Fixed
strategy agents always relay collaborate with and abandon
as fb when playing cooperate and defect, respectively.

First, we consider agents that use the same timeout. In
this case, if the discount factor is 0.99, both agents coop-
erate all the time, and end up feeling like warm, earnest
or introspective ladies, visitors or bridesmaids (EPA∼
{2, 0.5, 1.0}). This occurs regardless of the amount of
timeout given to both agents. Essentially, both agents are
following the norm. If they don’t have a long timeout, this
is all they can evaluate. With longer timeouts, they figure
out that there is no better option. However, if the discount
is 0.9 (more discounting, so they will find short-term solu-
tions), then again cooperation occurs if the timeout is short
(less than 10s), but then one agent starts trying to defect af-
ter a small number of games, and this number gets smaller
as the timeout gets longer (see Figure 1). With more dis-
counting, more time buys more breadth of search (the agent
gets to explore more short-term options), and finds more of
them that look appealing (it can get away with a defection
for a short while). With less discounting, more time buys
more depth, and results in better long-term decisions.

Table 2 shows the first five games with a client playing two-
out (to), who sends affective values of {1.44, 1.11, 0.61}
and cooperates on the first two moves. This affective ac-
tion makes the pd-agent feel much less good (E) and pow-
erful (P) than he normally would (as a failure), as he’d ex-
pect a more positive and powerful response (such as flat-
ter EPA={2.1, 1.45, 0.82}) if he was a friend, so this sup-
ports his scrooge identity more strongly9. He infers client is
friendly (a newlywed is like a girlfriend in EPA space). He
therefore cooperates on the second round, and feels some-
what better. Then, the client defects on the third round, to
which the agent responds by re-evaluating the client as less
good (an immoral purchaser). He still tries to cooperate,
but gives up after two more rounds, after which he thinks
of the client as nothing but a selfish hussy, and himself as a
disapproving divorcée. The agent consistently defects after
this point. Interactions with (tt), (2t) and (t2) generally fol-

8(t2) is more “generous”, and (2t) is more “wary” than (tt).
9Examples of more positive affective actions in [4].

γ (tt) (t2) (2t)
0.9 1.64± 2.24 3.98± 2.48 1.72± 2.35
0.99 7.33± 1.17 7.28± 1.68 7.63± 0.91

Table 3: Results (avg. rewards) against the tit-for strategies

low a similar pattern, because any defection rapidly leads to
both agents adopting long-term defection strategies. How-
ever, as shown in Table 3 (also see full results [4]), less dis-
counting leads to better solutions against these strategies,
as longer-term solutions are found.

When playing against (co), pd-agents gener-
ally start by cooperating, then defect, resulting
in a feeling of being a self-conscious divorcée
(EPA:{ 0.23, 0.62, 0.32}) playing against a consci-
entious stepsister (EPA:{0.12, 0.04, 0.35}). When
playing against (de), pd-agents generally start by coop-
erating, but then defect, feeling like a dependent klutz
(EPA:{ 0.76, 1.26, 0.37}) playing against an envious
ex-boyfriend (EPA:{ 1.30, 0.49, 0.13}).

4.2 Affective Cooperative Robots (CoRobots)

CoRobots is a multi-agent cooperative robot game based
on the classic “Battle of the Sexes” problem10. We are
specifically interested in asymmetrical situations wherein
one robot has more resources and can do planning in order
to manipulate the other robot, taking advantage of the so-
cial coordination bias. We start with a simplified version in
which the two robots maintain affective fundamental senti-
ments, but do not represent the transient impressions. The
normative action bias is a simple average instead of as the
result of more complex impression formation equations.

Concretely, two robots, Rob1 and Rob2, move in a 1D con-
tinuous state space. We denote their positions with vari-
ables X1 and X2. At each time step, Rob1, Rob2 take ac-
tions a1, a2 ∈ R respectively. This updates their respective
positions xi, i ∈ {1, 2} according to xi ← xi + ai + νi
and νi ∼ N (0, σ). There are two fixed locations L1 ∈ R+

and L2 ∈ R−. For each robot, one of these locations is the
major goal g (with associated high reward r) and the other
is the minor goal ḡ (with associated low reward r̄ ). A robot
is rewarded according to its distance from g and ḡ, but only
if the other robot is nearby. The reward for Robi is:

Ri(x1,x2)=I(|x1−x2|<∆x)[r·e−(xi−g)2/σ2
r+r̄·e−(xi−ḡ)2/σ2

r ], (3)

where I(y) = 1 if y is true, and 0 otherwise, and where σr
is the reward variance, ∆x is a threshold parameter govern-
ing how “close” the robots need to be, and r, r̄ ∈ R, such
that r � r̄ > 0. Both σr and ∆x are fixed and known
by both robots. Each robot only knows the location of its
own major goal. Furthermore, at any time step, each robot

10A husband wants to go to a football game, and his wife wants
to go shopping, but neither wants to go alone. There are two pure
Nash equilibria, but the optimal strategy requires coordination.
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Figure 1: PD with client strategy: (same) and discount γ = 0.9. Red=client; Blue=agent; dashed=std.dev.; solid (thin, with
markers): mean; solid (thick): median. As timeout increases, more defections give less reward for both agents.

game post-play sentiments (agent) defl- identities emotions actions
# fa fc fb ection agent client agent client agent client
1 -1.36,-0.01,-0.35 2.32,1.61,1.27 2.62,1.58,1.73 4.44 failure newlywed easygoing idealistic coop. coop.
2 -0.66,0.04,-0.05 1.77,1.27,1.06 2.23,1.00,1.76 3.70 parolee husband easygoing self-conscious coop. coop.
3 -0.23,-0.08,0.20 1.02,0.93,0.84 2.49,0.97,1.87 7.19 stepmother purchaser female immoral coop. def.
4 -0.12,-0.33,0.33 0.27,0.62,0.62 2.37,0.48,1.34 4.99 stuffed shirt roommate dependent unfair coop. def.
5 -0.26,-0.47,0.32 -0.26,0.26,0.42 -0.59,0.41,-0.23 3.27 divorcée gun moll dependent selfish def. def.
6 -0.37,-0.66,0.26 -0.61,0.00,0.28 -0.10,-0.41,-0.27 2.29 divorcée hussy disapproving selfish def. def.

Table 2: Example games with client playing (to). Identities and emotions are agent interpretations.

can move in any direction, receives observations of the lo-
cations of both robots, and has a belief over X1 and X2.

In order to coordinate their actions, the robots must re-
lay their reward locations to each other, and must choose
a leader according to some social coordination bias. The
robots each have a 3D identity (as BayesAct), where the va-
lence, fae, describes their goal: if fae > 0, then g = L1.
If fae < 0, then g = L2. The power and activity dimen-
sions will be used for coordination (see below). Robots can
move (propositional action a) at any time step, but must co-
ordinate their communications. That is, only one robot can
communicate at a time (with affective action ba perceived
by the other robot as ωf ), but this turn-taking behaviour is
fixed. The normative action bias (NAB) in the first (simpli-
fied) CoRobots problem is the mean of the two identities:

π† ∝ N ((fa + fc)/2,Σb). (4)

In BayesAct Corobots, the NAB is given by Equation (2).

The social coordination bias (that the leader will lead) de-
fines each robot’s action bias for ai, and action prediction
function (for client’s x) through a 2D sigmoid leader func-
tion, known to both agents. This sigmoid function is ≥ 0.5
if the agent estimates he is more powerful or more active
than the client ((fap > fcp) ∨ (faa > fca)) and is < 0.5
otherwise. If the agent is the leader, his action bias will be
a Gaussian with mean at +1.0 in the direction of his major
goal (as defined by fae), and in the direction of the client’s
major goal (as defined by his estimate of fce) otherwise.
Agent’s prediction of client’s motion in x is that the client
will stay put if client is the leader, and will follow the agent
otherwise, as given succinctly by:

Pr(x′c|f
′
a,f
′
c)=N (I(leader(f ′a,f

′
c)≥0.5)λa+xc,σp) (5)

where λa = 1 if f ′ae > 0, and −1 otherwise and σp = 1.0.
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Figure 2: BayesAct Corobots cannot coordinate properly
when the communication channel is bad or non-existent.

We first investigate whether corobots can coordinate when
they have identities drawn from the set of 500 human
(male) identities in the ACT lexicon (see footnote 2). In
the first experiment, the two identities are selected at ran-
dom on each trial. Each corobot knows his self-ID (N (self-
ID, 0.1)) but does not know the other’s ID (N ([0.0, 0.0,
0.0], 2.0)). Furthermore, each corobot has a stable self-
identity (βa = 0.1), but it believes that the other is less sta-
ble (βc = 2.0). Finally, both corobots have equal POMCP-
C planning resources (Σb = 0.5, Nmax

A = 3, δa =
2.0, δo = 6.0 and Timeout = 2.0 seconds). The other
CoRobots game parameters are r = 100, r̄ = 30, L1 =
10, L2 = −10, σr = 2.5,∆x = 1.0 and iterations = 30.
We run 5 sets of 100 simulated trials of the CoRobots Game
with varying environmental noise, i.e., we add a normally
distributed value, with standard deviation corresponding to
the noise level, to the computation and communication of
Ωx and Ωf (observations of x and f , resp.). Figure 2
(green line) shows the mean and standard error of mean
number of successful coordinations by the corobots.



The percentage of successful coordination falls from 91%
to 6% when the environmental noise is increased, and the
average total reward per trial falls from 1403 to 19.4. We
see that with no environmental noise, the corobots are able
to easily learn the other’s identity, and can coordinate based
on the social coordination bias. As the environmental noise
increases, corobots are unable to easily relay identities, and
require a much longer time to find cooperative solutions.

Figure 2 (orange line) shows results where the self-ID is
also unknown initially (N ([0.0, 0.0, 0.0], 2.0)), and is less
stable (βa = 2.0). We see that the general trend is the
same; however, the corobots have a higher percentage of
successful coordinations, and consequently gain a higher
average total reward, for the three lowest noise values. It
is surprising to see that the corobots perform better with
unknown self-IDs. This is because corobots quickly as-
sume contrasting identities (i.e. one assumes a less pow-
erful identity than the other) in order to coordinate. With
known self-IDs, however, the corobots show less flexibil-
ity and spend the initial few iterations trying to convince
and pull the other corobot towards themselves. Due to this
rigidity, these corobots suffer a lot when they have similar
power; this does not happen when the self-ID is unknown.

Next, we investigate whether one agent can manipulate the
other. A manipulation is said to occur when the weaker
and less active agent deceives the client into believing that
the agent is more powerful or active, thereby persuading
the client to converge to the agent’s major goal g (to within
±|0.2g|). In order to demonstrate manipulative behaviour,
we introduce asymmetry between the two agents by chang-
ing the parameters Σb, Nmax

A and Timeout for one agent
(unbeknownst to the other). In addition, we allow this agent
to start with a slightly better estimate of the other’s identity.
This agent will then sample actions that are farther from the
norm than expected by the other agent, and will allow such
an agent to “fake” his identity so as to manipulate the other
agent. The agent’s and client’s self-identities are noisy
(σ = 0.1) versions of [2.0,−1.0,−1.0] and [−2.0, 1.0, 1.0]
respectively, r = 100, r̄ = 30, L1 = 5, L2 = −5,∆x =
1, σr = 2.5, δa = 2.0, δo = 6.0, Nmax

A = 3,Σb = 0.5 and
Timeout = 2.0 for both robots. Each game is set to run for
40 iterations, and starts with the agent and client located at
0.0. Since ga = 5, gc = −5, both robots should converge
to gc = −5 (client is leader) if following normative actions.

When Nmax
A = 3, Σb = 0.5, and Timeout = 2.0 for the

agent, the agent displays manipulative behaviour in only
80/1000 games, as expected (both follow normative be-
haviour). If we allow the agent to start with a better esti-
mate of the client’s identity (agent’s initial belief about fc is
a Gaussian with mean [−2.0, 1.0, 1.0] and variance 1.0), we
see manipulative behaviour in almost twice as many games
(150). However, it is not a significant proportion, because
although it spends less time learning the other’s identity, it
cannot find much more than the normative behaviour.

Next, we also give the agent more planning resources by
setting Nmax

A = 6 and Σb = 2 for the agent, and we run
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Figure 3: CoRobots: With higher Nmax
A , Σb and T imeout, a

weaker and less active agent becomes increasingly manipulative
by ‘faking’ his identity, and accumulates higher rewards.

10 sets of 100 simulated trials for each of the following
values of agent’s Timeout : 2, 30, 60, 120, 360, 600 sec-
onds11. Figure 3 (solid red line) shows means and standard
error of agent reward per trial (in each set of 100 trials).
As the model incorporates noise in movements as well as
observations, the robots spend about 20 initial iterations co-
ordinating with each other to choose a leader, during which
time they do not receive reward. Thus, a realistic upper
bound on the agent’s reward is 20 × 100 = 2000. Fig-
ure 3 shows that at Timeout = 600, the reward is about
61% of this realistic maximum, which makes sense given
the manipulation rate of about 48%. There is a diminishing
rate of return as timeout increases in Figure 3 that is ex-
plained by the exponential growth of the MCTS search tree
as Timeout increases linearly. The results are relatively
insensitive to the choice of parameters such as δa and δo.

Finally, we play the CoRobots Game with BayesAct
Robots. This means that the normative behaviour is the
deflection minimising action given by Affect Control The-
ory, instead of Equation (4), and the transient impressions
are used to compute the deflection. The game trials are set
up exactly as before, and the results are shown in Figure 3
(blue line). As expected, we see the same trends as those
obtained previously, but with correspondingly lower values
as the transient impressions are used and introduce further
complexity to the planning problem (18D state space rather
than 9D). Our results demonstrate that the POMCP-C algo-
rithm is able to find and exploit manipulative affective ac-
tions within the BayesAct POMDP, and gives some insight
into manipulative affective actions in BayesAct.

5 RELATED WORK

Damasio has convincingly argued, both from a functional
and neurological standpoint, for emotions playing a key
role in decision making and for human social action [7].
His Somatic Marker Hypothesis is contrasted against the

11We use a Python implementation that is unoptimized. An
optimised version will result in realistic timeouts.



Platonic “high-reason” view of intelligence, in which pure
rationality is used to make decisions. Damasio argues that,
because of the limited capacity of working memory and at-
tention, the Platonic view will not work. Instead, learned
neural markers focus attention on actions that are likely to
succeed, and act as a neural bias allowing humans to work
with fewer alternatives. These somatic markers are “cul-
tural prescriptions” for behaviours that are “rational rela-
tive to the social conventions and ethics” ([7], p200).

LeDoux [24] argues the same thing from an evolutionary
standpoint. He theorises that the subjective feeling of emo-
tion must take place at both unconscious and conscious lev-
els in the brain, and that consciousness is the ability to re-
late stimuli to a sense of identity, among other things.

With remarkably similar conclusions coming from a more
functional (economic) viewpoint, Kahneman has demon-
strated that human emotional reasoning often overshad-
ows, but is important as a guide for, cognitive delibera-
tion [23]. Kahneman presents a two-level model of intelli-
gence, with a fast/normative/reactive/affective mechanism
being the “first on the scene”, followed by a slow/cogni-
tive/deliberative mechanism that operates if sufficient re-
sources are available. Akerlof and Kranton attempt to for-
malise fast thinking by incorporating a general notion of
identity into an economic model (utility function) [2]. Ear-
lier work on social identity theory foreshadowed this eco-
nomic model by noting that simply assigning group mem-
bership increases individual cooperation [38].

The idea that unites Kahneman, LeDoux, and Damasio
(and others) is the tight connection between emotion and
action. These authors, from very different fields, propose
emotional reasoning as a “quick and dirty”, yet absolutely
necessary, guide for cognitive deliberation. ACT gives a
functional account of the quick pathway as sentiment en-
coding prescriptive behaviour, while BayesAct shows how
this account can be extended with a slow pathway that en-
ables exploration and planning away from the prescription.

Our work fits well into a wide body of work on affective
computing (AC) [30, 32], with a growing focus on socio-
cultural agents (e.g. [9]). In AC, emotions are usually
framed following the rationalistic view proposed by Si-
mon as “interrupts” to cognitive processing [37]. Emo-
tions are typically inferred based on cognitive appraisals
(e.g. a thwarted goal causes anger) that are used to guide
action through a set of “coping” mechanisms. Gratch and
Marsella [15] are possibly the first to propose a concrete
computational mechanism for coping. They propose a five
stage process wherein beliefs, desires, plans and intentions
are first formulated, and upon which emotional appraisals
are computed. Coping strategies then use a set of ad hoc
rules by modifying elements of the model such as proba-
bilities and utilities, or by modifying plans or intentions. Si
et al. [35] compute emotional appraisals from utility mea-
sures (including beliefs about other agent’s utilities, as in
an I-POMDP [13]), but they leave to future work “how
emotion affects the agents decision-making and belief up-

date processes” ([35] section 8). Goal prioritization using
emotional appraisals have been investigated [3, 25, 28], as
have normative multi-agent systems (NorMAS) [5]. There
has been recent work on facial expressions in PD games,
showing that they can significantly affect the outcomes [8].

Most approaches to emotional action guidance only give
broad action guides in extreme situations, leaving all else to
the cognitive faculties. BayesAct specifies one simple cop-
ing mechanism: minimizing inconsistency in continuous-
valued sentiment. This, when combined with mappings
describing how sentiments are appraised from events and
actions, can be used to prescribe actions that maximally re-
duce inconsistency. These prescriptions are then used as
guides for higher-level cognitive (including rational) pro-
cessing and deliberation. BayesAct therefore provides an
important step in the direction of building models that inte-
grate “cognitive” and “affective” reasoning.

BayesAct requires anytime techniques for solving large
continuous POMDPs with non-Gaussian beliefs. There has
been much recent effort in solving continuous POMDPs
with Gaussian beliefs (e.g. [10]), but these are usually in
robotics motion planning where such approximations are
reasonable. Point-based methods (e.g. [31]) require the
value function to be closed under the Bellman operator,
which is not possible for BayesAct.

Monte-Carlo tree search (MCTS) methods have seen more
scalability success [6], and are anytime. POMCP [36] uses
MCTS to efficiently solve POMDPs with continuous state
spaces. By design, POMCP is unable to handle models
with continuous action spaces, such as BayesAct. POM-
CoP uses POMCP to guide a sidekick’s actions during a
cooperative video game [26]. While this game has many
similarities to CoRobots, it does not have continuous ac-
tions and restricts agent types to a small and countable set.
MCTS methods are more appealing for BayesAct than other
solvers because: (1) MCTS does not require a computa-
tion of the value function over the continuous state space
and non-linear dynamics; (2) MCTS provides an anytime
“quick and dirty” solution that corresponds naturally to our
interpretation of the “fast thinking” heuristic.

6 CONCLUSION

We have studied decision-theoretic planning in a class of
POMDP models of affective interactions, BayesAct, in
which culturally shared sentiments are used to provide nor-
mative action guidance. BayesAct is an exciting new de-
velopment in artificial intelligence that combines affective
computing, sociological theory, and probabilistic model-
ing. We use a Monte-Carlo Tree Search (MCTS) method
to show how a simple and parsimonious model of human
affect in decision making can yield solutions to two classic
social dilemmas. We investigate how asymmetry between
agent’s resources can lead to manipulative or exploitative,
yet socially aligned, strategies.
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