Progressive Memory Banks for
Incremental Domain Adaptation

Nabiha Asghar

Collaborators:
Lili Mou, Kira Selby, Kevin Pantasdo, Pascal Poupart, Xin Jiang

WATERLOO .
= adeptming, '\7‘ INSTITUTE g’é

<Y HUAWEI

Motivation

Domain Adaptation (DA): Transfer knowledge from one domain to another
(in a machine learning system; especially neural networks)

Incremental Domain Adaptation (IDA): Sequentially incoming domains

- Only have access to data of current domain
- Build a unified model that performs well on all domains

Use-cases of IDA
1. Company loses a client and its data, but wants to preserve the ‘knowledge’ in the ML system
2. Quickly adapt to new domain/data without training from scratch
3. Don’t know the domain of a data point during inference

Outline

Prevalent and State-of-the-art DA & IDA methods in NLP
Proposed Approach: Progressive Memory for IDA
Theoretical Analysis

Empirical Experiments

Natural Language Inference (Classification)

Dialogue Response Generation

Conclusion

Related Work - DA & IDA

- Multi-task learning: Jointly train on all domains
- Non-incremental DA
- Expensive to add new domain; needs data for all domains

Related Work - DA & IDA

- Multi-task learning: Jointly train on all domains
- Non-incremental DA
- Expensive to add new domain; needs data for all domains

- Finetuning: Sequentially train on all domains
- Catastrophic forgetting of old domains

Related Work - DA & IDA

Multi-task learning: Jointly train on all domains
- Non-incremental DA
- Expensive to add new domain; needs data for all domains

Finetuning: Sequentially train on all domains
- Catastrophic forgetting of old domains

Progressive Neural Networks: Training with

network expansion and partial freezing
- For prediction, need to know domain of input

DL)

Predictor 1

Predictor 2

Related Work - DA & IDA

Multi-task learning: Jointly train on all domains

- Non-incremental DA

- Expensive to add new domain; needs data for all domains
Finetuning: Sequentially train on all domains

- Catastrophic forgetting of old domains

Progressive Neural Networks: Training with

network expansion and partial freezing
- For prediction, need to know domain of input

Elastic Weight Consolidation (EWC): Finetuning

with regularization
- Control learning on weights important for older domains
- keeps the weights in a neighborhood of one possible
minimizer of the empirical risk of the first task
- needs to store a large number of parameters

D ’D o Predictor 1
G 0y Predictor 2

o Low error for task B == EFwC

e Low error for task A = L2
== N0 penalty

Related Work - Memory Networks

End-to-end memory network

Assign a memory slot to an input sentence/sample

Assign a memory slot to one history

Neural Turing Machine

Memory is not directly parameterized; read/written

by neural controller

Serves as temporary scratch paper; does not store

knowledge

}Ha

Predicted
Answer

A

Sentences

Question g

External Input External Output
Controller

Read Heads Write Heads

I l

Memory

Proposed Approach - Progressive Memory

Incrementally increase model capacity
(by increasing memory size)

Memory slots store knowledge in
distributed fashion

We adopt key-value memory

=

Compute
attention
probability

M key) pgal)

‘V
2y

Weighted sum
by attention

probability

Progressive Memory

At time step i:

The RNN state is given by h; = RNN(h;_1, x;)
The memory mechanism computes an attention
probability a; by

Qjj = exp{h-ﬁr_lm?(cy)}

- Z!J — 4;\'? ot
E]’:]. azx],

mg.ke”: key vector of jth memory slot (N in total)

Retrieve memory content by weighted sum (by
attention probability) of all memory values:

N
| 3
ci= Y aiml® m;™: value vector of j'th
j=1 memory slot

v

&

Compute
attention

probability

» —>

=

Weighted sum
by attention

probability

M key) pqwal)

[h; = RNN(h;_1, [x;, ¢i])]

10

Progressive Memory

At time step i:

The RNN state is given by h; = RNN(h;_1, x;)

The memory mechanism computes an attention
probability a; by

> S T (key)

i = exp{hi_lmj }
;.

Qv g '

, E;\:: 1 &Z ~.] !

mg.kcy’: key vector of jth memory slot (N in total)

Retrieve memory content by weighted sum (by
attention probability) of all memory values:

N
(val), .y
& = Z ai,jmgval) m; " value vector of j'th
j=1 memory slot

For IDA:

Add M slots to original N slots

(expand) Q4
~1,J o N+M ~
Zj':l .5/
N+M
(expand) (expand) _ (val)
c; — E a; ; m;
j=1

11

Algorithm

Algorithm 1: Progressive Memory for IDA

Input: A sequence of domains Dq, Dy,--- , D,
Output: A model performing well on all domains
Initialize a memory-augmented RNN
Train the model on Dy
for D,,--- ,D, do
Expand the memory with new slots
Load RNN weights and existing memory banks
Train the model by updating all parameters
end
Return: The resulting model

12

Training Considerations

- Freezing learned params versus Finetuning learned params

Empirical results are better for latter

- Finetuning w/o increasing memory versus Finetuning w/ increasing memory

increased model capacity helps to learn new domain with less overriding of the previously
learned model. Empirical results confirm this.

- Expanding hidden states versus Expanding Memory

An alternate way of increasing model capacity

similar to the progressive neural network, except that all weights are fine-tuned and there are
connections from new states to existing states.

Theoretical and empirical results show latter is better

13

Expanding hidden states vs Expanding Memory

Theorem 1. Let RNN have vanilla transition with

the linear activation function, and let the RNN (a) Expand RNN states (b) Expand memory
state at the last step h;_, be fixed. For a partic-
ular data point, if the memory attention satisfies h;_, o h; h;_4 o hy
N4+M =~ N ~ o s
> JoN+1 0 < T j=1Qi,j, then memory expan- 5 —
sion yields a lower expected mean squared differ- l o c o
. . [L
ence in h; than RNN state expansion, under rea- :
sonable assumptions. That is, ! | ! E l
[Ri-1 : W Ry |
(m) 2 (s) 2 , Y, ! !
E|Ih{™ - hil| <E [Ih{ - kil R A\ — hioy [—| hy
: hl_l E :' hl : v s
(m) : . : e ' T fme c X
where h; " refers to the hidden states if the mem-
ory is expanded. hgs) refers to the original dimen- Xi

sions of the RNN states, if we expand the size of

RNN states themselves. i’

To prove: E [||h§m) _ hi'|2] <E [”h?) B hi||2]

Suppose the original hidden state h; is D-
dimensional. We assume each memory slot is d-
dimensional, and that the additional RNN units
when expanding the hidden state are also d-
dimensional. We further assume every variable
in the expanded memory and expanded weights
are iid with zero mean and vari ance o2. Finally, ev-
ery variable in the learned memory slots, i.e., m,
follows the same distribution (zero mean, vari-
ance 02). This assumption may not be true after

the network is trained, but is useful for proving

theorems.
E [||hY — hill?]

=E[||W - hi—1|?]

- Z Z E [(’&7]-;‘,)2] E [(’}Vlz—l[k]f]

j=1 i=1
=D -d- Var(w) - Var(h)

— Ddo?o?

(a) Expand RNN states (b) Expand memory
h;_, | hy hi_4 | hy
l Xi c Xi
hl—l a‘ hi l
= w ‘ o hi_4 | hy
h;_, 1 h i |
___________ :_____‘____, CI xi
Xi

E [|IA{™ — h|?

=E [||W(C_)Ac||2] where Ac & ¢ — ¢

= Dd(f2Var(Ack)
Wi is the weight matrix connecting
attention content to RNN states.

15

It remains to show that Var(Aci) < o2

/
Aece=c —c¢

N N+M N+M
’ ' ;
=) (@j—a;)mi+ Y ofm; = 3" gim,
_a','.aJ\l'+l+”'+a.'\l'+.'\l
3T tta . .
— LN ifl1<j<N
7, et a1+ -+ QN M
g T -
Qa : :
— J : ifN+1<j<N+M

1 + R + a-:!\"%-ﬁ'l

Var(Acy) = E[(c), — ck)2] Vi<k<d

= ZE[I¢ — el
1 d N+M 2
=251 (> ;ajmjk)
k=1 J=1
N+M

<oE | ()2
j=1

<02 L]

Memo Unnormalized Original Expande
b measure attr% prob. attn. prob.
v ’
m, a a, al
m;) a a;
my Ay ay ay
T T EEENEEE R —ememee
My+1 AN+ A4
v ’
Myym XN+M AniM

Figure 3: Attention probabilities before and after mem-
ory expansion.

16

Competing Methods

Multi-task learning (Non-IDA)

Finetuning with fixed memory
Finetuning with increasing memory
Finetuning with expanding hidden states
Progressive Neural Network

Elastic Weight Consolidation (EWC)

17

Competing Methods

- Multi-task learning (Non-IDA)

- Finetuning with fixed memory*

- Finetuning with increasing memory*

- Finetuning with expanding hidden states*

- Progressive Neural Network
- Elastic Weight Consolidation (EWC)

* with and without additional vocabulary

18

Experiment | - Natural Language Inference

Classification Task

Determine the relationship between two sentences (entailment, contradiction or neutral)

Dataset: MultiNLI Corpus (~400K labelled samples)

5 domains: Fiction, Government, Slate, Telephone, Travel

Base Model: BiLSTM network with pretrained GloVe embeddings

19

Experiment | - Results

% Accuracy on
#Line| Model | Trained on/by S | T

1 S 65.017 | 61.237
5| B 56.467 | 66.497
3 + o |S 65.417 | 60.877
4 | 28 [T 56.77V | 67.017
5 | 2= [S+T 66.02% | 70.00
6 S—T (F) 65.62¢ | 69.90%
7 = | S>T(F+M) 66.23 70.21
8 <= [SOTFE+M+V) 67.55 70.82
9 + | SST(F+H) 64.097 | 68.357
10 Z [SOT (F+H+V) 63.687 | 68.027
11 ® [SST(EWC) 66.027 | 64.107
12 S—T (Progressive)|| 64.477 68.25%

For the étati'stical test (compared with Line 8), T, |: p <
0.05 and 1, {}: p < 0.01.

20

Experiment | - Results

| Group | Setting | Fic | Gov | Slate | Tel | Travel |
Non- | In-domain training 6541V | 67.01% | 5930% | 67.20% | 64.70%
IDA | Fic + Gov + Slate + Tel 4+ Travel (multi-task) 70.60" 73.30 63.80 69.15 67.07+
Fic — Gov — Slate — Tel — Travel (F+V) 67.24F | 70.82% | 6241+ | 67.62¢ | 68.39
DA Fic — Gov — Slate — Tel — Travel (F+V+M) 69.36 72.47 63.96 69.74. 68.39
Fic — Gov — Slate — Tel — Travel (EWC) 67.12% | 68.71 | 5990V | 66.09% | 65.70"
Fic — Gov — Slate — Tel — Travel (Progressive) 65.22% | 67.87% | 61.13% | 6696Y | 67.90

21

Experiment Il - Dialogue Response Generation

Generation Task
- Given an input sentence, generate an appropriate output sentence
Datasets

- Source Domain: Cornell Movie Corpus (~220K labelled samples)

- Target Domain: Ubuntu Dialogue Corpus (~15K labelled samples)

Base Model: Seq2Seq with decoder-to-encoder-attention

22

Experiment |l - Results

BLEU-2 on W2V-Sim on
Line| Model | Trained on/by S f 5 S f 5
1 S 28427 1 0.738% [0.480% [0.456%
2 | RNN =5 0.795% | 1.265% || 0454% | 0.4807
3 + S 3.074" | 0.712% || 0.498' | 0471
2] 2 § T 0.920% | 1.287% || 0.462% | 0.487¢
Z 2 . : o dos o .
5 | ~ S+T 2.650T | 0.889% [[0471% | 0.462¢
6 S—T (F) 1.210% | 1.101% || 0.509% | 0.5147
7 = S—T (F+M) 1.435% | 1.207 || 0.526 0.522
8 g S—T (F+M+V) 1.637 1.652 0.522 0.525
9 + S—T (F+H) 1.036% | 1.606% || 0.503% [0.4957
10 % SST (F+H+V) 1.257% | 1.419% || 05047 | 0.4927
11 ol S—T(EWC) 1.397% | 1.382F || 05137 | 0.5147
12 S—T (Progressive) || 1.299% | 1.408% || 0.502% | 0.503%

23

Conclusion

Proposed progressive memory for IDA (Incremental Domain Adaptation)
Outperforms other IDA approaches

Empirical results show it avoids catastrophic forgetting

Theoretical results show it is better than other ways of capacity expansion

Details: https://arxiv.org/pdf/1811.00239.pdf

24

References

EWC: Kirkpatrick et al. “Overcoming catastrophic forgetting in neural networks”. PNAS, 2017.
Progressive Neural Networks: Rusu et al. “Progressive neural networks”. arXiv:1606.04671, 2016.
End-to-end Memory Networks: Sukhbaatar et al. “End-to-end memory networks”. NIPS, 2015.
Neural Turing Machine: Graves et al. “Hybrid computing using a neural network with dynamic external
memory”. Nature, 2016.

MultiNLI corpus: Williams et al. “A broad-coverage challenge corpus for sentence understanding
through inference”. NAACL, 2018.

Cornell Movie Corpus: Danescu and Lee. “Chameleons in imagined conversations: A new approach to
understanding coordination of linguistic style in dialogs”. CMCL, 2011.

Ubuntu Dialogue Corpus: Lowe et al. “The Ubuntu dialogue corpus: A large dataset for research in
unstructured multi-turn dialogue systems”. SIGDIAL, 2015.

25

