
Analysis of an ()-Approximation Algorithm for

the Maximum Edge-Disjoint Paths Problem with

Congestion Two

Nabiha Asghar

Department of Combinatorics & Optimization

University of Waterloo, Ontario, Canada

1. BACKGROUND

1.1 Edge Disjoint Paths Problem

The edge-disjoint paths problem (EDPP) has been studied for a long time by graph theorists and

algorithm developers for combinatorial optimization. In its most basic form, the EDPP is as follows:

given a graph and a set of pairs of vertices/terminals for in decide whether

or not has edge-disjoint paths connecting the given pairs of terminals. This problem is equivalent to

finding vertex-disjoint paths connecting a given set of terminal pairs in a graph, because it is ‘dual’ to

EDPP (by considering the line graph).

The generic EDPP is NP-complete but it has many variants, some of which are solvable to optimality in

polynomial time (for example, an algorithm is known through Robertson and Seymour for the case

where is fixed and is not part of the input. Here is the number of vertices in the graph). One spinoff of

EDPP is the maximum edge-disjoint paths problem, which has many useful applications in network flow

theory such as vehicle routing and data transmission modeling. The maximum edge-disjoint paths

problem will be the focus of this report.

1.2 Maximum Edge Disjoint Paths Problem

The maximum edge disjoint paths problem (MEDPP) is as follows:

Given an undirected graph and a set of pairs of vertices for in , find the

maximum number of pairs that can be routed by edge-disjoint paths (abbreviated EDPs).

This problem is also NP-complete, as expected. Hence the main target of recent research on this problem

is to develop efficient polynomial time approximation algorithms for it. For restricted classes of graphs,

such as planar graphs, trees, meshes and highly connected graphs, there exist algorithms with constant

factor and poly-logarithmic approximation guarantees. However for the generic case, the best possible

approximation to date is due to a seminal work by Chekuri, Khanna and Shepherd [6], who have given an

 approximation algorithm.

There exist some important hardness results for MEDPP. For directed graphs, it is known that no

polynomial time algorithm can achieve an approximation guarantee of

 for any , where

denotes the number of edges in the given graph, unless [10]. For the undirected case, the

strongest result known so far says that no polynomial time algorithm can achieve an approximation

guarantee of

 for any [1].

Given these hardness results, many researchers are now focusing on MEDPP with the allowance of

having a non-unitary ‘congestion’ on the edges of . A graph is said to have congestion if each edge

can be used up to times in the EDPs. This scenario occurs in real world applications where there is a

need to find a unit unsplittable flow between each terminal pair, given that each edge in between has the

capacity of carrying a load of . As far as the approximation of MEDPP with congestion is concerned,

there exists an

 - approximation algorithm for congestion [17]. There also exists an -

approximation algorithm via randomized rounding if the congestion is allowed to be

 [15].

However, a hardness result has been shown which asserts that no polynomial time algorithm can achieve

an approximation guarantee of

 for any with congestion (up to

),

unless [1].

1.3 Goal

Up to 2011, the best known algorithm for MEDPP with congestion two was an approximation

algorithm proposed in 2006 [6]. The goal of this report is to present an

 -approximation

algorithm for MEDPP with congestion two (recently proposed by Kawarabayashi and Kobayashi [12])

which breaks this previously known bound of . For the ease of readability, the problem and the

goal are restated below:

MEDPP with Congestion Two: Given an undirected graph and a set of pairs of vertices in

 , find the maximum number of pairs that can be routed by edge-disjoint paths (EDPs) with

congestion two.

Goal: Present an

 -approximation algorithm for MEDPP with congestion two.

1.4 Report Layout

The proof of the claimed approximation-ratio consists of two theorems and a corollary, stated below.

Let OPT be the cost of optimal solution of MEDPP when the congestion is at most 1.

Theorem 1: Given an instance of MEDPP, we can find

 EDPs between the terminal pairs with

congestion two in polynomial time, where is a poly-logarithmic function.

(Idea: Decompose the graph into highly connected subgraphs. For each subgraph, since it is highly

connected, we can find a complete graph as a minor and route the paths through this clique minor with

congestion two.)

Theorem 2: Given a randomized polynomial time algorithm for finding

 EDPs between given

terminal pairs for some , where is a poly-logarithmic function, there is a polynomial time

randomized

 - approximation algorithm for the MEDPP.

(Idea: Reduce the graph till achieves a certain level of edge-connectivity. Then apply a well-known result

by Rao and Zhou [16] to find

 edge-disjoint paths in the reduced graph. Use these paths to find

 edge-disjoint paths with congestion two in the original graph.)

Given these two theorems, the main result of this report is a straight-forward consequence:

Corollary 3: There exists a randomized polynomial time

 -approximation algorithm for

MEDPP with congestion two.

Proof: Given any instance of MEDPP, Theorem 1 guarantees the existence of

 EDPs with

congestion two, by giving a polynomial time algorithm to do so. Given this algorithm, Theorem 2

guarantees the existence of a randomized polynomial time

 -approximation algorithm

for MEDPP. This proves the claimed approximation-ratio.

The layout of the report is as follows: Section 2 gives the necessary definitions and previously known

results needed for proofs of Theorem 1 and 2. Section 3 and section 4 give the detailed proofs of Theorem

1 and Theorem 2 respectively. Section 5 gives some concluding remarks.

2. DEFINITIONS & KNOWN RESULTS

This section states the definitions and known results needed for the proofs of Theorem 1 and Theorem 2.

2.1 Definitions

 Given a graph , its line graph is a graph such that each vertex of represents an edge

of , and two vertices of are adjacent if and only if their corresponding edges in share a

common endpoint in .

 A set of vertices Z in G is well-linked if, for every set S containing at most half of Z,

 Here, denotes the set of vertices of which share an edge with a vertex of .

 A subcubic tree is a tree which has maximum degree at most three.

 A separation of a graph is a pair of disjoint induced subgraphs and of such that

 and there are no edges between and . The order of the

separation is

 A -web of order in a given graph is a set of disjoint trees such that for any

distinct , there is a set of vertex-disjoint paths connecting and .

 The Cartesian Product of two graphs and is the graph with

vertex set and an edge between and

 exists if and only if either and , or and . In particular,

 consists of , its copy , and edges each connecting one vertex in

 and its corresponding vertex in

 A graph G has a grid-like minor of order if the graph contains a as a minor (called a

clique minor of order). Note: This definition varies slightly from the one presented in the

original paper. This is to avoid the discussion on ‘half integral minors’ introduced by the authors

in the beginning of Section 5.2.

2.2 Known Results

CKS-Theorem (Chekuri, Khanna and Shepherd [5]): For an input graph with the set of terminal

pairs , one can compute vertex-disjoint subgraphs and their corresponding disjoint sets of

vertex pairs of such that the following hold:

1) each consists of some pairs of terminals and belongs to ;

2) the members of the terminal pairs in are well-linked in

3) the total size of the sets is at least , where is bounded by .

KT-Theorem (Kreutzer-Tazari [14]): Let G be a graph and let be given to be the disjoint trees

of a -web of order in G with for some constant . Then there is a randomized polynomial

time algorithm to find either a minor in or a minor in . Furthermore, if each of the

 vertex-disjoint paths between and contains a terminal for any distinct , then every node of the

obtained minor contains a terminal or its copy.

RS-Theorem (Robertson-Seymour [9]): Let and be terminals in a given graph . If

there is a clique minor of order at least in , and there is no separation of order at most

in such that contains all the terminals and contains at least one node of the clique minor, then

there are vertex-disjoint paths with two ends in for Furthermore, given the above

clique minor, the desired disjoint paths can be found in time.

Rao-Zhou Theorem (Rao-Zhou [16]): For some constant c, a randomized -approximation

algorithm exists for the MEDPP in a graph with edge-connectivity at least .

3. PROOF OF THEOREM 1

In this section, for the sake of ease in readability and understanding, we prove the following weaker

version of Theorem 1:

Theorem 1.1: Given an instance of MEDPP, we can find

 EDPs connecting the terminal pairs

with congestion two in polynomial time.

Section 3.1 gives the main idea and sketch of the proof of Theorem 1.1. Section 3.2 gives the full proof of

Theorem 1.1. Section 3.3 gives an insight into how the proof of Theorem 1.1 can be modified to give the

proof of Theorem 1. Section 3.4 gives an overview of the algorithm behind the CKS-Theorem.

3.1. Proof Sketch of Theorem 1.1

Suppose we are given an instance of MEDPP. The goal is to find

 EDPs with congestion two in

polynomial time. Since the MEDPP can be reduced to the Maximum Vertex-Disjoint Paths Problem

(MVDPP) by considering the line graph of the given instance, it suffices to give an algorithm to find

 vertex-disjoint paths (abbreviated VDPs) in polynomial time such that each vertex is used in at

most two paths. We can assume that our graph is free of loops and multi edges since they do not affect the

number of VDPs in a graph.

We first prove the following proposition:

Proposition 1.1: In a well-linked instance of MVDPP (this means is the set of terminal pairs in

 and is a well-linked set in), we can find

 VDPs with congestion two in polynomial time.

Proof sketch of Proposition 1.1:

1) Let , be positive integers such that

 ,

 and let Construct

a -web of order (i.e. a set of disjoint trees such that each contains at-least

vertices in and there are VDPs connecting and in G for any). (Lemma 3.1,

3.2 and 3.3)

2) Use the -web of order to construct a grid-like minor of order

 , which is attached

to terminals in in polynomial time. (KT-Theorem)

3) Now construct VDPs (with congestion two) between the pairs of terminals in via in . (RS-

Theorem).

This completes the proof of Proposition 1.1.

Given that Proposition 1.1 holds, Theorem 1.1 is proved as follows: Decompose the graph into well-

linked instances via CKS-Theorem (as depicted in the figure below). Apply Proposition 1.1 to

each and then ‘combine’ the result for the original graph by using the inequality

 given to us by CKS-Theorem (where is the optimal value for). With the help of some

easy calculus, it follows that we can find

 VDPs in

Fig: CKS Decomposition

The graph with the set of terminal pairs (each pair of similar shapes depicts one terminal pair) is decomposed into disjoint

subgraphs such that for each , is a well-linked set in . Moreover,

.

This completes the proof sketch of Theorem 1.

3.2. Proof of Theorem 1.1

To prove Theorem 1.1, we first give three lemmas on the properties of well-linked sets. Then using KT-

Theorem and RS-Theorem, we give the proof of Proposition 1.1. This is followed by proof of Theorem

1.1. This is depicted in the flow chart below:

Lemma 3.1: Let be an integer and be a well-linked set with For disjoint subsets

with , there exist VDPs connecting and

 Theorem 1.1

 Proposition 1.1

 Lemma 3.3 Lemma 3.2 Lemma 3.1

Proof: By way of contradiction, suppose there are no VDPs connecting and . Then there exists a

separation of order at most in such that and

Sub-claim: Both and contain at most

 vertices of .

Proof: Suppose contains more than

 vertices of . Let be exactly half of the vertices in

 and let = . Now implies and the order of

separation implies . Putting these two inequalities together, we have

 +1. Now contains exactly half of the vertices of , hence its neighborhood must have

size at least

 due to the well-linkedness of . However,

 , which is a contradiction to the fact that is a well-linked set. So contains at

most

 vertices of . By symmetry, the same holds for This completes the proof of sub-claim. □

We may assume that one of and contains at least

 vertices of . (If not, then both

contain less than

 vertices of . So , which implies at least

 vertices of lie in . This contradicts the fact that) So say has at

least

 and at most

 vertices of . Since is a well-linked set, the neighborhood of should

have size at least

 . However,

 , a contradiction.

Lemma 3.2: Given a well-linked set in a given graph , there exists a subcubic tree which contains a

subset of such that

, and there are at most vertices of degree three in . Moreover,

given a well-linked set , there is a polynomial time algorithm to construct such a subcubic tree and a

vertex set

Proof: The set and tree are constructed inductively, by constructing sets and trees such

that and there are at most vertices of degree three in . The process

is stopped when for some we get

. We set and output

Base Case: Choose Since is well-connected, by Lemma 3.1 there exists a path between and

 . Set to be this path and . Clearly there are no vertices of degree 3 in . Hence the

conditions are satisfied so the base case holds.

Inductive Step: Suppose and have been found, with

 Let be the set of vertices of degree

3 in , so We need to construct and and show that

Since

, we have that . By Lemma 3.1, there exist VDPs between and

 . One of these paths, call it , avoids the vertices in , since Follow from

 to the first vertex in that it hits, say Let be the subpath of between and .

Set and It is clear that is a tree because we did not create any

cycle by adding the path to . Also, did not hit any vertices of so there are no vertices of degree

 in Moreover, since is the only vertex in that could have degree 3 in it

follows that Thus and satisfy our conditions.

This procedure takes polynomial time because there are at most

 iterations, and in each

iteration we need to find disjoint paths which can be accomplished in time. Hence it is a

 -time procedure.

Lemma 3.3: Let and be positive integers. Given a well-linked set with , there is a

polynomial time algorithm to construct a -web of order . Moreover, the -web of order consists of

disjoint trees such that each contains at least vertices in and there are VDPs connecting

 and in for any distinct .

Proof: By virtue of Lemma 3.2, we obtain a subcubic tree and a vertex set such that

and

Consider the following well-known text book result [8, Lemma 12.4.6]:

Let be an integer. Let T be a tree of maximum degree at most three and Then has a set of

edges such that every component of has between and vertices in , except that one such component

may have fewer vertices in .

Proof: If , then taking satisfies our requirements so we are done. So assume Choose

 such that some component of contains at least vertices of and is as small as possible.

Finding such an edge takes polynomial time. Then the end of in has degree at most two in because is

subcubic. The minimality of implies . Add to and recursively apply this procedure to

 . Since the number of edges is finite, the iterations stop and we obtain our required set in polynomial time.

If we let in this result, then the above procedure takes at least iterations. Hence in polynomial

time we can find a set of edges in such that there are subtrees of and

 for all This means contains at most a quarter of the vertices of

 (since So by Lemma 3.1, there exist VDPs between and for any

distinct

We now present the proof of Proposition 1.1.

Proof of Proposition 1.1:

Take the well-linked instance Set

 and

 Apply Lemma 3.2 to get a

 -web of order . By KT-Theorem, we have a minor in or a minor in Since a minor

in is also a minor in and , we can say that we have a minor, say , in .

Moreover, there are VDPs between and for any distinct so by virtue of KT-

Theorem each node of contains a terminal or its copy.

Let

 and let be the set of these terminal pairs in . Let be the copy of in

Claim 3.4: In , there is no separation of order at most such that contains and

 contains at least one node of .

Proof: By way of contradiction, suppose such a separation exists. Since contains at least one

node of and has neighbors in , can have at most of these neighbors in .

Hence, vertices of are contained in Since each

node of contains a terminal or its copy, it follows that , where is the

copy of in Let and its corresponding vertex in . By definition, and are

connected by an edge in . Observe that implies and implies

 . So implies . Therefore, . By setting

 and , we have a separation of such that contains terminals in

(since it contains) and contains terminals in . By Lemma 3.1, there exist VDPs connecting

and . But this is not possible, because order of is at most (since order of is at

most). Hence we have arrived at a contradiction. This completes the proof of Claim 3.4 □

Now apply RS-Theorem to with as the set of terminals. In polynomial time, we obtain

 VDPs connecting in . Clearly these paths correspond to

 VDPs in with

congestion two (because a vertex in and its corresponding vertex in may be used in two

different VDPs in So we have found

 VDPs between the terminal pairs in

 with congestion two in polynomial time.

This completes the proof of Proposition 1.1.

Finally, we present the proof of Theorem 1.1.

Proof of Theorem 1.1:

Take the input instance of MVDPP, and apply the CKS-Theorem to obtain vertex-disjoint subgraphs

 and their corresponding disjoint sets of terminal pairs . Now, each is a well-

linked instance of size for positive integers

 and

 . Let be the

optimal value of . Then we have

 for , where β is a poly-logarithmic

function.

Claim 3.5:

Proof: We proceed by strong induction.

Base case: For the claim is trivially true. For

 some non-negative terms (since)

Hence

). So the base case holds.

Inductive Step: Suppose the inequality is true for . We need to prove it for

 , by base case

 , by inductive hypothesis

This completes the inductive step, and completes the proof of Claim 3.5. □

 We can find

 VDPs in each instance by Proposition 1.1. So in all the instances

 , we can find

 VDPs in total.

Now

 by Claim 3.5, hence we can find

 VDPs in total.

This completes the proof of Theorem 1.1.

3.3. Extending Theorem 1.1 to Theorem 1

We briefly discuss here how to extend Theorem 1.1 to Theorem 1 (i.e. improving the number of paths

from

 to

). The idea is to use a graph with large minimum degree

instead of a clique minor. We begin with some definitions.

Definitions:

 Let and be a set of disjoint connected subgraphs in a given graph . Denote by

the intersection graph of and , defined as follows: is the bipartite graph with

partite sets and defined, which has one vertex for each element of and , and an edge

between two vertices exists if the corresponding subgraphs in and in respectively, intersect.

Thus there are vertices in one partite set of the bipartite graph, and vertices in the other

partite set. For sets and of disjoint paths in , we say that a pair is a half-integral

 - minor if contains the graph as a minor. If contains such a pair , we say

that has a half-integral - minor.

 The minimum degree of a graph is the degree of the vertex which has the least number of

edges incident to it.

Proof Sketch of Theorem 1:

The idea is to first use the following lemma to obtain a minor with large minimum degree which can be

used to do the routing:

Lemma 3.6: Let is a graph. Given a -web of order in with for some constant , there

exists a randomized polynomial time algorithm to find either a half-integral - minor, where is a graph

satisfying , or a minor in . Furthermore, if each of the disjoint paths

between and contains a terminal for distinct , then every node of the obtained minor contains a

terminal.

The proof of Lemma 3.6 mostly relies on a well known result by Bollobás & Thomason [3, Lemma 3]

and we will not say more about it here due to brevity of space.

To prove Theorem 1, first the following proposition is proved:

Proposition 1.2: In a well-linked instance of MVDPP, we can find

 VDPs with

congestion two in polynomial time.

Proof Sketch: Let Z be the terminal set. Apply Lemma 3.3 and Lemma 3.6 with

 and

 . Then we have an - minor with in whose each node

contains a terminal, or a minor in , whose each node contains a terminal. If we have a minor in ,

then we can connect terminal pairs by the same arguments as in the proof of Proposition 1.1. Hence we

may assume that we have an - minor with in

Take

 terminals in and let be the set of these terminals. It can be shown (by way of

contradiction) that there is no separation of order at most in such that contains all the

terminals and contains at least one node of the minor (if such a separation exists, it contradicts

Lemma 3.1 in a way very similar to the one we saw in Claim 3.4).

Now use the following theorem (in contrast to the RS-Theorem in the proof of Proposition 1.1):

BT-Theorem (Bollobás-Thomason [2, Theorem 3]): Let and be terminals in a

given graph . If contains as a minor, where is some graph satisfying , and

there is no separation of order at most in such that contains all the terminals and

contains at least one node of the minor, then there are VDPs with two ends in for

So, we can connect by VDPs in in polynomial time, which correspond to VDPs in with

congestion two. □

Given that Proposition 1.2 holds, Theorem 1 is proved in the same fashion as Theorem 1.1 was proved via

Proposition 1.1 (by CKS-Theorem).

3.4. Brief Discussion on CKS-Theorem

In this section, we give a brief sketch of the algorithm behind the CKS-Theorem because it is an essential

ingredient of the proof of Theorem 1.1 and it is worthwhile to look into its details. The sketch we provide

is fairly technical, and only highlights the main steps of the algorithm. Here, we consider a slightly

different and more general form of the theorem which considers well-linkedness of a set in terms of

(multi-commodity) flow, instead of cuts or size of neighborhoods. (It is safe to do so, because the

algorithms for the two cases are quite similar). We begin with some definitions and then state the theorem

to be proved, followed by a sketch of the decomposition algorithm.

Definitions

 Let be a capacitated graph, where is an integer capacity function on nodes (in the

context of this report, . Let } be a set of source-sink

pairs, where the ’th pair has a non-negative demand associated to it. Let

 Then the multicommodity flow problem is to find the maximum number of paths that

can route flow between the sources and their respective sinks such that the demand at each sink is

satisfied, flow is conserved at every node and node capacities are not violated. The maximum

concurrent flow for a given instance is the largest such that can be feasibly routed in . The

sparsity of a cut is the ratio of the capacity of the cut to the demand separated by the cut. The

maxflow-mincut gap is the worst case ratio between these two quantities.

 A product multicommodity flow instance is a special case, where is induced by a weight

function on the nodes of for .

 Let and be as defined above. Let denote the set of paths joining and in and let

 . The LP relaxation given below, called the ‘Multicommodity Flow Relaxation’, is

used to obtain an upper bound on the number of pairs from that can be routed in For each

path , we have a variable which is the amount of flow sent on . Let denote the

total flow sent on paths for pair . We let denote the flow vector with a component for each path

 . The LP relaxation is:

max

 subject to:

 Given a non-negative weight function on a set of nodes in , is -flow-linked in

 if there is a feasible multicommodity flow for the problem with demand

between every unordered pair of terminals

Theorem

Let be a solution to the LP given above for a given instance of MVDPP in a graph . Let

 be an upper bound on the worst case maxflow-mincut gap for product multicommodity flow

problems in Then there is a partition of , computable in polynomial time, into vertex-disjoint induced

subgraphs and weight function with the following properties. Let be the

induced pairs of in and let be the set of terminals of .

1. for

2. is -flow-linked in

3.

Decomposition Algorithm Overview

Without loss of generality, we can assume that all source and sink nodes in are distinct. Start with a

multi-commodity flow for in with total flow value View the flow for each pair as

being decomposed into flow paths. Given a node-induced subgraph of , we let

be the total flow induced in by the original flow . This means that counts flow only on flow

paths from the original flow path decomposition that are completely contained in Given a node

 let denote the flow in for . By definition,

Then the goal of the algorithm, given as input, is to output a node-induced subgraph partition of into

 with associated weight functions . The algorithm is as follows:

1. If let be some pair with positive flow in . Define on by

 and for Stop and output along with
2. Otherwise, construct an instance of the product multicommodity flow problem on with

 for . Let be the maximum concurrent flow for this instance.

(i) if stop the recursive procedure. Let
 . Output and

(ii) Otherwise find a vertex cut such that its size is at most . Recurse on

the induced graphs and

It can be shown that properties 1 and 2 stated in the theorem are met in step 1 and step 2 (i) of the

algorithm. To see why property 3 holds, note that the partitioning procedure defines a recursion tree,

whose leaves are the graphs where we stop the recursion, either because the flow is sufficiently small or

the concurrent flow for the product multicommodity flow that we set up is large enough. It can be proved

that the flow lost in all the recursive step is at most , from which it follows that

 ()/2. Then from the termination condition it follows that ()/10 log). From here,

property 3 follows. This proves the theorem.

4. PROOF OF THEOREM 2

In this section we return to the paradigm of EDPs (instead of VDPs). Section 4.1 gives the main idea and

sketch of proof of Theorem 2. Section 4.2 gives the complete proof of Theorem 2. Section 4.3 gives an

insight into the details of Rao-Zhou Theorem.

4.1. Proof Sketch of Theorem 2

Given an instance of MEDPP, assume that there exists a randomized polynomial time Algorithm A that

finds

 EDPs for some The idea is to make use of Rao-Zhou Theorem and prove Theorem

2 in four main steps given below:

1) In order to be able to use Rao-Zhou Theorem, we require our graph to have edge-connectivity at

least (i.e. the minimum cut in G should have size). To achieve this, we do the

following:

(i) if there exists a cut of size which separates into two parts and such that

both and contain a terminal pair, recursively apply Rao-Zhou Theorem to and

respectively. Combine the solutions to and to get a solution in original graph .

(Lemma 4.1, part (i)).

(ii) if there exists a cut of size which seperates G into two parts and such that

 and contains no terminal pair, reduce to by applying some edge

contractions and adding a few dummy edges to ‘small-degree vertices’ such that the

resulting graph is -edge-connected. (Lemma 4.1 part (ii), Lemma 4.2).

2) Obtain

 EDPs in . (Rao-Zhou Theorem)

3) Construct a polynomial time Algorithm B which finds

 paths in that are

edge-disjoint in the original graph G.

4) Compare the number of paths found by Algorithm B to that found by Algorithm A. Output the

higher number.

4.2. Proof of Theorem 2

Consider the given instance of MEDPP and assume that there exists a randomized polynomial time

Algorithm A that finds

 EDPs for some . For some fixed constants and , there are two

possibilities for the value of OPT:

OR

Consider the first case. Since

 EDPs can be found through Algorithm A, the approximation ratio

is =

 , for some constant

 , since

 , where is a constant

This means that if

 , the proof of theorem is complete. Therefore, for the

remainder of this discourse, we assume that

 for any . In particular, we assume

that

 .

We now prove some lemmas first, followed by the proof of Theorem 2.

Lemma 4.1: Let there be a partition of such that and ,

where is the constant as in Rao-Zhou Theorem. Let and be the optimal values of the

MEDPP when we restrict the problem to and respectively. Let and .

(i) If , , and for some then

 +

 holds for sufficiently large . It follows that combining an -

approximation solution in and an -approximation solution in gives an

 -approximation solution in .

(ii) If and is connected, then can be reduced to a smaller graph which contains

at least EDPs.

Proof: Note that by virtue of , we have that (since

each edge in the cut may result in a new EDP between a terminal pair having one end in and the

other in).

(i) Without loss of generality, we may assume that . Let be a constant such that

There can be two cases:

Case 1: Then

 (since

)

 (for sufficiently large , the first term is non-negative)

Case 2: Then . Hence and

so we have

 . So:

 since implies

 since

 for sufficiently large .

To go from the third last step to the second last step, we make use of the following fact from calculus: for

a positive integer with

 and for

 , we have:

 since and implies

 since

.

From Case 1 and Case 2, we see that

 +

 holds for sufficiently large . From this

inequality and the fact that
 and

 , it follows that combining an -

approximation solution in and an -approximation solution in gives an -

approximation solution in .

(ii) Contract to a single vertex by repeated edge-contractions. Since has EDPs and edge-

contractions do not decrease the number of EDPs in a graph, it follows that the reduced graph contains at

least EDPs.

We now show that can be reduced to a graph with edge-connectivity at least , so that the

conditions for the Rao-Zhou Theorem are met. To achieve this, we present Lemma 4.2.

Lemma 4.2: can be reduced to a graph , where has the following properties:

 If any partition of satisfies (where is the constant as in Rao-

Zhou Theorem) and both and are connected, then one of or is a single vertex

 Each contracted vertex has degree at most .

Furthermore, can be ‘augmented’ (via edge additions) to , where has edge-connectivity at least

 .

Proof: We first give a reduction from to

Step 1: Find a partition of such that and . If such partition

exists, go to Step 2. Otherwise go to Step 3.

Step 2: If and , divide the problem in the original graph into two smaller sub-

problems on and and solve the sub-problems recursively. Then by virtue of Lemma 4.1 part

(i), obtain a solution of the original instance by combining the solutions of the two sub-problems.

Otherwise, we may assume without loss of generality that . Contract each connected component

of to a single vertex.

Go to Step 1.

Step 3: Find a partition of such that , , and . If

such a partition exists, then divide the problem in the original graph into two smaller sub-problems on

 and and solve the sub-problems recursively. Then by virtue of Lemma 4.1 part (i), obtain a

solution of the original instance by combining the solutions of the two sub-problems.

Let the graph obtained at the end be called It is clear from this reduction that if there exists a cut of

size in , then we must have a single vertex on one of the sides of the cut (because we must

have contracted one side of the cut in either step 2 or step 3). Also, each contracted vertex in must have

degree at most (otherwise we would not have contracted it). It follows, from Lemma 4.1 part (ii),

that has at least EDPs.

Now we prove the second part of the lemma. Let be the set of vertices of with degree at most

 . For each arbitrarily pick an edge and add edges parallel to

Let be the obtained graph. Then clearly has edge-connectivity at least . Also note that any

vertex in has degree at most in (it may happen that for a vertex , every edge

incident to it gets replicated while replicating the edges of ’s neighbors. Since has degree at most

 and each of its incident edges gets replicated at most times, the claim follows).

Since has at least EDPs and adding edges does not decrease the number of EDPs, it follows that

 has at least EDPs.

We now apply Rao-Zhou Theorem to , which has the required edge-connectivity, and obtain

EDPs in with high probability. The task now is to find the set of

 EDPs in

such that no two paths in share a vertex of (because two paths sharing a contracted vertex of in

 may share an edge in). We present Algorithm B to find . Claim 4.3 shows that the set found

by Algorithm B has size at least

 for some constant and sufficiently large .

Algorithm B

Input:

 EDPs in

Goal: find the set of

 EDPs in such that no two paths in share a vertex of .

Step 0: Set and .

Step 1: If , output and stop the algorithm. Otherwise take a path through the minimum

number of vertices in . Add to

Step 2: Remove from all paths sharing a vertex in with , and go to Step 1.

Claim 4.3: For some constant , the output of Algorithm B satisfies

 for

sufficiently large . Moreover, Algorithm B runs in polynomial time.

Proof: Suppose is sufficiently large.

While

, we can find a path through at most

 vertices in Why is this so? If

every path in went through more than

 vertices in , then all the paths in together would go through more than vertices

in . Since each vertex in has degree at most , this would mean that somewhere in the paths

in , an edge is repeated. This contradicts the fact that is a set of EDPs.

Now

 So we can find a path through at most

 vertices in . Each of these vertices has degree at

most , hence shares a vertex in with at most

 =

 paths in

Now

 implies

 . Since

 paths are

removed in every iteration, there exists a constant such that

This means that the iterations must be carried out

 times before falls below

.

This means

 paths are added to while

.

To prove that Algorithm B runs in polynomial time, notice that

 is polynomial in size

and the size of is . Step 1 takes at most time and step 2 takes at most
 time, and the

number of iterations is at most . So the overall running time is polynomial. This completes the proof

of Claim 4.3. □

So we have

 EDPs in . Let be their corresponding EDPs in Also, let be

the

 EDPs found by Algorithm A that we assume to exist in the statement of Theorem 2. If

 , output . Otherwise output .

This completes the proof of Theorem 2.

4.3. Brief Discussion on Rao-Zhou Theorem

This section gives brief insight into the proof of Rao-Zhou Theorem used in the proof of Theorem 2. We

begin with some definitions and then give the overview of the proof.

Note: Some of the notions described here have been defined and used in Section 3.4. However, to keep

these sections independent of each other, we redefine everything for the sake of easy readability.

Definitions:

 Given a non-negative weight function on a set of nodes in , is -cut-linked in

if such that is called a -cut-

linked instance.

 For a cut in a graph , let denote the set of edges with exactly one endpoint in

 . Let denote the total capacity of edges in a cut. Then the edge expansion of

a cut , where , is

 The expansion of a graph is the minimum

expansion over all cuts in .

 A graph is an expander if its expansion is at least a constant.

Proof Overview:

The idea is to first solve a fractional relaxation of the MEDPP, and based on its solution, the graph is

decomposed into disjoint subgraphs such that each subgraph is well-connected with respect to the set of

terminals it contains. The key point of this decomposition is that only a constant number of terminal pairs

are ‘lost’ this way, and the rest are still routable. To route them, an expander graph is constructed for each

subgraph and it is embedded into . Then a greedy algorithm is applied to route the set of terminal pairs

in this embedded expander graph. A more detailed summary is given below.

Let an instance of MEDPP consist of a graph and a set of terminal pairs

 }. Let denote the set of paths joining and in . Consider the

fractional relaxation of the MEDPP, where each terminal pair can route a real-valued amount of flow

between 0 and 1, and this flow can be split fractionally across a set of distinct paths. The LP relaxation

given below is used to obtain an upper bound on the number of pairs from that can be routed in For

each path in some , we have a variable which is the amount of flow sent on . We let denote

the total flow sent on paths for pair . We let denote the flow vector with a component for each path .

The LP relaxation is:

max

 subject to:

Let be the value of this LP for the optimal fraction solution of the LP. The Rao Zhou

Algorithm routes a poly-logarithmic fraction of this value using EDPs via the following steps:

1. Based on the value the graph is decomposed into subgraphs such that within each

subgraph, the subset of terminal pairs is ‘well-connected’.

Sketch of Decomposition: The decomposition is done via the following main theorem:

Given an MEDPP instance which has minimum cut and a solution to the

fractional MEDPP problem with , as in the LP given above, there is a polynomial time

algorithm which produces a set of disjoint subgraphs and a weight function on

 , where:

o contributes the same amount of weight to and

o The set of nodes in each subgraph is -cut-linked in

o Each subgraph has a minimum cut of

o in a subgraph such that

o

To put it in simple words, this decomposition theorem simply says that if we sum across all

subgraphs of , we get a sufficient fraction of terminal pairs in , i.e. we lose only a constant

fraction of the terminal pairs by assigning a zero weight to these lost terminals of . Moreover,

each subgraph is well-connected with respect to , the set of induced terminals of in i.e.

 is a -cut-linked instance.

2. For each -cut-linked instance of , construct an expander graph that can be embedded

into using its terminal set.

Construction: First split the graph into subgraphs , each with the same weight

function on its vertex set for all , by extending a uniform sampling scheme from

Karger [11] (Karger’s scheme requires that the minimum cut should have size at least .

This is where the main requirement of Rao-Zhou’s result, i.e. having -edge-connectivity

in the original graph, comes into play). This gives us a set of cut-linked instances

 such that is

 -cut-linked in for some Now obtain a set

 of vertex-disjoint ‘superterminals’, where each superterminal consists of

a subset of terminals in and gathers a weight between and , where is a parameter

dependent on the number (The idea of making superterminals is that each superterminal, which

is a set of clustered terminals, is better connected than individual terminals). These superterminals

are now used as vertices in the expander graph The edges of are defined using a technique

([13]) that builds an expander using matchings. This expander is embedded into

without any congestion by routing each matching in one of the split graphs using a maximum

flow computation.

3. Route terminal pairs in greedily via short disjoint paths (which are abundant in an expander

graph). The greedy method routes

 pairs of terminals, where

 in .

Greedy Algorithm: While there exists a pair in whose path length is less than a

predetermined parameter in , remove both nodes and edges from along the path

through which we connect a pair of terminals in .

Clearly this algorithm induces no congestion because we delete a path between a terminal pair in each

iteration. To show that the number of iterations (i.e. the number of paths routed by EDPs) is large enough,

use the fact that when a path is taken away, all remaining terminal pairs in the expander must have

distance at least . This completes the proof sketch of Rao-Zhou Theorem.

5. CONCLUDING REMARKS

This report has discussed, in detail, the

 - approximation algorithm for the maximum

edge-disjoint paths problem with congestion two, given by Kawarabayashi and Kobayashi [12]. The

claimed approximation guarantee is a direct consequence of Theorem 1 and Theorem 2, as stated in

Section 1.4. The result relies heavily on two results, given by Rao Zhou [16] and Chekuri et al. [4, 5]; this

report has also discussed these two briefly.

One possible way of getting the same approximation guarantee with congestion one is to prove that

Theorem 1 holds with congestion one. However, the methods (based on well-linked sets) adopted by the

authors to prove Theorem 1 do not hold for the case with congestion one. The reason is that their proof

relies on the LP relaxation given by Chekuri et al. [4, 5], which has integrality gap of So this LP

relaxation would not work for an example instance which has number of terminals.

Recent results & open problems: In 2012, a randomized algorithm with an approximation guarantee of

 for terminal pairs and congestion at most 14 has been proposed [7]. This is a significant

improvement over the previously known approximation guarantee of

 for congestion at most a

constant It remains to be seen whether this algorithm can be improved further. Also, for congestion

two, the question of whether the approximation guarantee of

 can be improved remains

to be open.

REFERENCES

[1] M. Andrews, J. Chuzhoy, S. Khanna and L. Zhang, Hardness of the undirected edge-disjoint paths

 problem with congestion. Proc. 46
th
 IEEE Symposium on Foundations of Computer Science

 (FOCS), 2005, 226-244.

[2] B. Bollobás & A. Thomason, Highly linked graphs, Combinatorica, 16 (1996), 313–320.

[3] B. Bollobás & A. Thomason, Proof of a conjecture of Mader, Erdös and Hajnal on topological

 complete subgraphs, European Journal of Combinatorics, 19 (1998), 883–887

[4] C. Chekuri, S. Khanna & B. Shepherd, The all-or-nothing multicommodity flow problem, Proc. 36
th

 ACM STOC, 2004, 156-165

[5] C. Chekuri, S. Khanna & B. Shepherd, Multicommodity flow, well-linked terminals & routing

 problems, Proc. 37
th
 STOC, 2005, 183-192.

[6] C. Chekuri, S. Khanna & B. Shepherd, An approximation and integrality gap for disjoint

 paths and unsplittable flow, Theory of Computing, 2 (2006), 137-146

[7] J. Chuzhoy, Routing in Undirected Graphs with Constant Congestion CoRR abs/1107.2554: (2011)

[8] R. Diestel, Graph Theory, 3
rd

 Edition, Springer-Verlag, 2005.

[9] N. Robertson & P.D. Seymour, Graph Minors. XIII. The disjoint paths problem, J. Combin.

 Theory Ser. B, 63 (1995), 65-110

[10] V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yannakakis, Near-optimal hardness

 results and approximation algorithms for edge-disjoint paths and related problems, J. Comp. Syst.

 Science, 67 (2003), 473-496. Also, Proc. 31
st
 ACM Symposium on Theory of Computing (STOC),

 1999, 19-28.

[11] D.R. Karger, Random sampling in cut, flow, and network design problems, Proc. 26
th
 ACM

 Symposium on Theory of Computing (STOC), 1994.

[12] K. Kawarabayashi & Y. Kobayashi, Breaking

 - Approximation Algorithms for the Edge-

 Disjoint Paths Problem with Congestion Two, Proc. 43
rd

 ACM Symposium on Theory of

 Computing (STOC), 2011, 81-88.

[13] R. Khandekar, S. Rao, & U. Vazirani, Graph partitioning using single commodity flows, Proc. 38
th

 ACM Symposium on Theory of Computing (STOC), 2006

[14] S. Kreutzer & S. Tazari, On brambles, grid-like minors & parameterized intractability of monadic

 second-order logic, SODA 2010, 354-364

[15] P. Raghavan & C.D. Thompson, Randomized rounding: A technique for provably good algorithms

 and algorithmic proofs, Combinatorica, 7 (1987), 365-374.

[16] S. Rao & S. Zhou, Edge Disjoint paths in moderately connected graphs, SIAM J. Computing,

 39(2010),1856-87

[17] A. Srinviasan, Improved approximations for edge-disjoint paths, unsplittable flow, and related

 routing problems, Proc. 38
th
 IEEE Symposium on Foundations of Computer Science (FOCS), 1997,

 416-425

