
Analysis of an  (  )-Approximation Algorithm for 

the Maximum Edge-Disjoint Paths Problem with 

Congestion Two 
 

Nabiha Asghar 

Department of Combinatorics & Optimization 

University of Waterloo, Ontario, Canada 

 

 

 
 

1. BACKGROUND 

 

1.1  Edge Disjoint Paths Problem 

The edge-disjoint paths problem (EDPP) has been studied for a long time by graph theorists and 

algorithm developers for combinatorial optimization. In its most basic form, the EDPP is as follows: 

given a graph         and a set of   pairs of vertices/terminals         for       in    decide whether 

or not   has   edge-disjoint paths connecting the given pairs of terminals. This problem is equivalent to 

finding vertex-disjoint paths connecting a given set of terminal pairs in a graph, because it is ‘dual’ to 

EDPP (by considering the line graph).  

The generic EDPP is NP-complete but it has many variants, some of which are solvable to optimality in 

polynomial time (for example, an       algorithm is known through Robertson and Seymour for the case 

where   is fixed and is not part of the input. Here   is the number of vertices in the graph). One spinoff of 

EDPP is the maximum edge-disjoint paths problem, which has many useful applications in network flow 

theory such as vehicle routing and data transmission modeling. The maximum edge-disjoint paths 

problem will be the focus of this report. 

 

1.2  Maximum Edge Disjoint Paths Problem 

The maximum edge disjoint paths problem (MEDPP) is as follows: 

Given an undirected graph           and a set of   pairs of vertices         for       in     , find the 

maximum number of pairs that can be routed by edge-disjoint paths (abbreviated EDPs). 

This problem is also NP-complete, as expected. Hence the main target of recent research on this problem 

is to develop efficient polynomial time approximation algorithms for it. For restricted classes of graphs, 

such as planar graphs, trees, meshes and highly connected graphs, there exist algorithms with constant 

factor and poly-logarithmic approximation guarantees. However for the generic case, the best possible 



approximation to date is due to a seminal work by Chekuri, Khanna and Shepherd [6], who have given an 

      approximation algorithm.  

There exist some important hardness results for MEDPP. For directed graphs, it is known that no 

polynomial time algorithm can achieve an approximation guarantee of    
 

 
    for any    , where   

denotes the number of edges in the given graph, unless      [10]. For the undirected case, the 

strongest result known so far says that no polynomial time algorithm can achieve an approximation 

guarantee of         
 

 
    for any     [1]. 

Given these hardness results, many researchers are now focusing on MEDPP with the allowance of 

having a non-unitary ‘congestion’ on the edges of  . A graph   is said to have congestion   if each edge 

can be used up to   times in the EDPs. This scenario occurs in real world applications where there is a 

need to find a unit unsplittable flow between each terminal pair, given that each edge in between has the 

capacity of carrying a load of  . As far as the approximation of MEDPP with congestion   is concerned, 

there exists an    
 

  - approximation algorithm for congestion   [17]. There also exists an     - 

approximation algorithm via randomized rounding if the congestion is allowed to be   
    

         
  [15]. 

However, a hardness result has been shown which asserts that no polynomial time algorithm can achieve 

an approximation guarantee of      
 

   
   

   for any     with congestion   (up to   
          

               
  ), 

unless      [1]. 
 

1.3  Goal 

Up to 2011, the best known algorithm for MEDPP with congestion two was an       approximation 

algorithm proposed in 2006 [6]. The goal of this report is to present an    
 

             -approximation 

algorithm for MEDPP with congestion two (recently proposed by Kawarabayashi and Kobayashi [12]) 

which breaks this previously known bound of      . For the ease of readability, the problem and the 

goal are restated below: 

MEDPP with Congestion Two: Given an undirected graph           and a set of   pairs of vertices in 

    , find the maximum number of pairs that can be routed by edge-disjoint paths (EDPs) with 

congestion two. 

Goal: Present an    
 

             -approximation algorithm for MEDPP with congestion two. 

 

1.4  Report Layout 

The proof of the claimed approximation-ratio consists of two theorems and a corollary, stated below. 

Let OPT be the cost of optimal solution of MEDPP when the congestion is at most 1. 

Theorem 1: Given an instance of MEDPP, we can find   
   

 
 

    
  EDPs between the terminal pairs with 

congestion two in polynomial time, where   is a poly-logarithmic function. 

 



(Idea: Decompose the graph into highly connected subgraphs. For each subgraph, since it is highly 

connected, we can find a complete graph as a minor and route the paths through this clique minor with 

congestion two.) 

Theorem 2: Given a randomized polynomial time algorithm for finding   
   

 
 

    
  EDPs between given 

terminal pairs for some    , where   is a poly-logarithmic function, there is a polynomial time 

randomized    
   

                - approximation algorithm for the MEDPP. 
 

(Idea: Reduce the graph till achieves a certain level of edge-connectivity. Then apply a well-known result 

by Rao and Zhou [16] to find 
   

         
 edge-disjoint paths in the reduced graph. Use these paths to find 

   

   
   
               

 edge-disjoint paths with congestion two in the original graph.) 

 

Given these two theorems, the main result of this report is a straight-forward consequence: 

Corollary 3: There exists a randomized polynomial time    
 

             -approximation algorithm for 

MEDPP with congestion two. 

Proof: Given any instance of MEDPP, Theorem 1 guarantees the existence of      
 

        EDPs with 

congestion two, by giving a polynomial time algorithm to do so. Given this algorithm, Theorem 2 

guarantees the existence of a randomized polynomial time    
 

             -approximation algorithm 

for MEDPP. This proves the claimed approximation-ratio.                                                                            
 

The layout of the report is as follows: Section 2 gives the necessary definitions and previously known 

results needed for proofs of Theorem 1 and 2. Section 3 and section 4 give the detailed proofs of Theorem 

1 and Theorem 2 respectively. Section 5 gives some concluding remarks. 

 

2.  DEFINITIONS & KNOWN RESULTS 

This section states the definitions and known results needed for the proofs of Theorem 1 and Theorem 2. 

2.1 Definitions 

 Given a graph  , its line graph is a graph      such that each vertex of      represents an edge 

of  , and two vertices of      are adjacent if and only if their corresponding edges in   share a 

common endpoint in  . 

 A set of vertices Z in G is well-linked if, for every set S containing at most half of Z,        

       Here,      denotes the set of vertices of   which share an edge with a vertex of  . 

 A subcubic tree is a tree which has maximum degree at most three. 

 A separation       of a graph   is a pair of disjoint induced subgraphs   and   of   such that 

               and there are no edges between        and       . The order of the 

separation       is              

 A  -web of order   in a given graph   is a set of   disjoint trees           such that for any 

distinct    , there is a set of   vertex-disjoint paths connecting    and   . 



 The Cartesian Product       of two graphs            and            is the graph with 

vertex set                            and an edge between            and         

   exists if and only if either       and        , or       and        . In particular, 

     consists of        , its copy           , and edges each connecting one vertex in 

  and its corresponding vertex in     

 A graph G has a grid-like minor of order   if the graph      contains a    as a minor (called a 

clique minor of order  ). Note: This definition varies slightly from the one presented in the 

original paper. This is to avoid the discussion on ‘half integral minors’ introduced by the authors 

in the beginning of Section 5.2. 
 

2.2 Known Results 
 

CKS-Theorem (Chekuri, Khanna and Shepherd [5]): For an input graph   with the set of terminal 

pairs   , one can compute vertex-disjoint subgraphs         and their corresponding disjoint sets of 

vertex pairs         of    such that the following hold: 

1) each    consists of some pairs of terminals and    belongs to   ; 

2) the members of the terminal pairs in    are well-linked in     

3) the total size of the sets    is at least         , where      is bounded by              . 

KT-Theorem (Kreutzer-Tazari [14]): Let G be a graph and let         be given to be the disjoint trees 

of a  -web of order   in G with         for some constant  . Then there is a randomized polynomial 

time algorithm to find either a    minor in      or a    minor in  . Furthermore, if each of the 

  vertex-disjoint paths between    and    contains a terminal for any distinct    , then every node of the 

obtained minor contains a terminal or its copy. 

RS-Theorem (Robertson-Seymour [9]): Let         and         be terminals in a given graph  . If 

there is a clique minor of order at least    in  , and there is no separation       of order at most      

in   such that   contains all the terminals and     contains at least one node of the clique minor, then 

there are vertex-disjoint paths    with two ends in       for          Furthermore, given the above 

clique minor, the desired disjoint paths can be found in       time. 

Rao-Zhou Theorem (Rao-Zhou [16]): For some constant c, a randomized          -approximation 

algorithm exists for the MEDPP in a graph with edge-connectivity at least       .  

 

3.  PROOF OF THEOREM 1 
 

In this section, for the sake of ease in readability and understanding, we prove the following weaker 

version of Theorem 1: 

Theorem 1.1: Given an instance of MEDPP, we can find   
   

 
  

    
  EDPs connecting the terminal pairs 

with congestion two in polynomial time. 



Section 3.1 gives the main idea and sketch of the proof of Theorem 1.1. Section 3.2 gives the full proof of 

Theorem 1.1. Section 3.3 gives an insight into how the proof of Theorem 1.1 can be modified to give the 

proof of Theorem 1. Section 3.4 gives an overview of the algorithm behind the CKS-Theorem. 

3.1.  Proof Sketch of Theorem 1.1 

Suppose we are given an instance of MEDPP. The goal is to find   
   

 
  

    
  EDPs with congestion two in 

polynomial time. Since the MEDPP can be reduced to the Maximum Vertex-Disjoint Paths Problem 

(MVDPP) by considering the line graph of the given instance, it suffices to give an algorithm to find 

  
   

 
 

    
  vertex-disjoint paths (abbreviated VDPs) in polynomial time such that each vertex is used in at 

most two paths. We can assume that our graph is free of loops and multi edges since they do not affect the 

number of VDPs in a graph. 

We first prove the following proposition: 

Proposition 1.1: In a well-linked instance       of MVDPP (this means   is the set of terminal pairs in 

  and is a well-linked set in  ), we can find      
 

   VDPs with congestion two in polynomial time. 

Proof sketch of Proposition 1.1: 

1) Let  ,   be positive integers such that         
 

   ,         
 

   and let          Construct 

a  -web of order   (i.e. a set of disjoint trees           such that each    contains at-least   

vertices in   and there are   VDPs connecting       and      in G for any    ). (Lemma 3.1, 

3.2 and 3.3) 

2) Use the  -web of order   to construct a grid-like minor   of order      
 

   , which is attached 

to terminals in   in polynomial time. (KT-Theorem) 
 

3) Now construct VDPs (with congestion two) between the pairs of terminals in   via   in  . (RS-

Theorem). 
 

This completes the proof of Proposition 1.1.                

Given that Proposition 1.1 holds, Theorem 1.1 is proved as follows: Decompose the graph   into well-

linked instances          via CKS-Theorem (as depicted in the figure below). Apply Proposition 1.1 to 

each         and then ‘combine’ the result for the original graph   by using the inequality        
   

    
  given to us by CKS-Theorem (where      is the optimal value for        ). With the help of some 

easy calculus, it follows that we can find   
   

 
  

    
  VDPs in    

 

 

 

 

 

 

 

 

 

 



 

                      
 

 
Fig: CKS Decomposition 

 

The graph   with the set of terminal pairs   (each pair of similar shapes depicts one terminal pair) is decomposed into disjoint 

subgraphs          such that for each  ,    is a well-linked set in   . Moreover,      
 
    

   

    
. 

 

This completes the proof sketch of Theorem 1.                                   

3.2.  Proof of Theorem 1.1 

To prove Theorem 1.1, we first give three lemmas on the properties of well-linked sets. Then using KT-

Theorem and RS-Theorem, we give the proof of Proposition 1.1. This is followed by proof of Theorem 

1.1. This is depicted in the flow chart below: 

 

 

 

 

 

 

 

 

Lemma 3.1: Let   be an integer and   be a well-linked set with         For disjoint subsets         

with            , there exist   VDPs connecting    and      

     Theorem 1.1 

  Proposition 1.1 

     Lemma 3.3       Lemma 3.2       Lemma 3.1 

      

                        



Proof: By way of contradiction, suppose there are no   VDPs connecting    and   . Then there exists a 

separation        of order at most     in   such that         and           

Sub-claim: Both     and     contain at most 
   

 
 vertices of  . 

Proof: Suppose     contains more than 
   

 
 vertices of  . Let   be exactly half of the   vertices in 

    and let   =        . Now         implies                and the order of 

separation       implies             . Putting these two inequalities together, we have        

         +1. Now   contains exactly half of the vertices of  , hence its neighborhood must have 

size at least 
   

 
  due to the well-linkedness of  . However,  

                                  

                                               

                          

               
   

 
  , which is a contradiction to the fact that   is a well-linked set. So     contains at 

most 
   

 
 vertices of  . By symmetry, the same holds for      This completes the proof of sub-claim. □ 

We may assume that one of     and     contains at least 
   

 
   vertices of  . (If not, then both 

contain less than 
   

 
   vertices of  . So                         , which implies at least 

   vertices of   lie in       . This contradicts the fact that              ) So say     has at 

least 
   

 
   and at most 

   

 
 vertices of  . Since   is a well-linked set, the neighborhood of     should 

have size at least 
   

 
  . However, 

             

                     
  

 
   

                    
   

 
   , a contradiction.                                                                                                           

 

Lemma 3.2: Given a well-linked set   in a given graph  , there exists a subcubic tree   which contains a 

subset    of   such that      
   

 
, and there are at most        vertices of degree three in  . Moreover, 

given a well-linked set  , there is a polynomial time algorithm to construct such a subcubic tree   and a 

vertex set       

 

Proof: The set    and tree   are constructed inductively, by constructing sets      and trees    such 

that                  and there are at most        vertices of degree three in   . The process 

is stopped when for some   we get      
   

 
. We set       and output       

Base Case: Choose        Since   is well-connected, by Lemma 3.1 there exists a path between   and 

 . Set    to be this path and        . Clearly there are no vertices of degree 3 in   . Hence the 

conditions are satisfied so the base case holds. 

Inductive Step: Suppose    and    have been found, with      
   

 
  Let    be the set of vertices of degree 

3 in   , so              We need to construct      and      and show that                  



Since      
   

 
, we have that            . By Lemma 3.1, there exist      VDPs between    and 

    . One of these paths, call it  , avoids the vertices in   , since               Follow   from 

       to the first vertex in         that it hits, say    Let   be the subpath of   between   and  . 

Set           and                 It is clear that      is a tree because we did not create any 

cycle by adding the path   to   . Also,   did not hit any vertices of    so there are no vertices of degree 

   in       Moreover, since   is the only vertex in      that could have degree 3 in             it 

follows that                            Thus      and      satisfy our conditions. 

This procedure takes polynomial time because there are at most 
   

 
       iterations, and in each 

iteration we need to find      disjoint paths which can be accomplished in      time. Hence it is a 

     -time procedure.                                                                                                                                  

 

Lemma 3.3: Let   and   be positive integers. Given a well-linked set   with        , there is a 

polynomial time algorithm to construct a  -web of order  . Moreover, the  -web of order   consists of   

disjoint trees         such that each    contains at least   vertices in   and there are   VDPs connecting 

     and      in   for any distinct    . 

 

Proof: By virtue of Lemma 3.2, we obtain a subcubic tree   and a vertex set      such that         

and      
   

 
      

Consider the following well-known text book result [8, Lemma 12.4.6]: 

 

Let     be an integer. Let T be a tree of maximum degree at most three and         Then   has a set   of 

edges such that every component of     has between   and      vertices in  , except that one such component 

may have fewer vertices in  . 

Proof: If       , then taking     satisfies our requirements so we are done. So assume         Choose 

       such that some component    of     contains at least   vertices of   and      is as small as possible. 

Finding such an edge   takes polynomial time. Then the end of   in    has degree at most two in    because   is 

subcubic. The minimality of    implies             . Add   to   and recursively apply this procedure to  

    . Since the number of edges is finite, the iterations stop and we obtain our required set   in polynomial time. 

 

If we let     in this result, then the above procedure takes at least   iterations. Hence in polynomial 

time we can find a set   of edges in   such that there are   subtrees         of     and   

               for all        This means         contains at most a quarter of the vertices of 

    (since       So by Lemma 3.1, there exist   VDPs between         and         for any 

distinct                                                                                                                                                            
 

We now present the proof of Proposition 1.1. 

 

Proof of Proposition 1.1: 
 

Take the well-linked instance        Set        
 

   and           
 

     Apply Lemma 3.2 to get a 

 -web of order  . By KT-Theorem, we have a    minor in      or a    minor in    Since a    minor 

in   is also a    minor in      and    , we can say that we have a    minor, say  , in     . 



Moreover, there are   VDPs between         and         for any distinct      so by virtue of KT-

Theorem each node of   contains a terminal or its copy. 

Let    
 

 
  and let   be the set of these   terminal pairs in  . Let    be the copy of   in       

 

Claim 3.4: In     , there is no separation       of order at most      such that   contains   and 

    contains at least one node of  . 

Proof: By way of contradiction, suppose such a separation       exists. Since     contains at least one 

node   of   and   has     neighbors in  ,   can have at most      of these neighbors in       . 

Hence,                           vertices of   are contained in      Since each 

node of   contains a terminal or its copy, it follows that                   , where    is the 

copy of   in     Let        and    its corresponding vertex in      . By definition,   and    are 

connected by an edge in     . Observe that       implies     and           implies 

      . So              implies         . Therefore,            . By setting 

       and       , we have a separation         of   such that    contains   terminals in   

(since it contains  )  and    contains    terminals in  . By Lemma 3.1, there exist   VDPs connecting    

and   . But this is not possible, because order of         is at most      (since order of       is at 

most     ). Hence we have arrived at a contradiction. This completes the proof of Claim 3.4   □                                     

     

Now apply RS-Theorem to      with   as the set of terminals. In polynomial time, we obtain   

     
 

   VDPs connecting   in     . Clearly these paths correspond to      
 

   VDPs in   with 

congestion two (because a vertex   in   and its corresponding vertex    in    may be used in two 

different VDPs in        So we have found      
 

        
 

   VDPs between the terminal pairs in 

  with congestion two in polynomial time. 

This completes the proof of Proposition 1.1.                                                                                                  
 

Finally, we present the proof of Theorem 1.1. 
 

Proof of Theorem 1.1: 
 

Take the input instance of MVDPP, and apply the CKS-Theorem to obtain vertex-disjoint subgraphs 

        and their corresponding disjoint sets of terminal pairs        . Now, each         is a well-

linked instance of size      for positive integers         
 

    and         
 

   . Let      be the 

optimal value of         . Then we have         
   

    
 for      , where β is a poly-logarithmic 

function. 
 

Claim 3.5:       
 
    

 

         

 

   
    

Proof:  We proceed by strong induction. 

Base case: For     the claim is trivially true. For      

     

 

      

 

                some non-negative terms (since            ) 

                                            

Hence            
 

       

 

      

 

 ). So the base case holds. 

Inductive Step: Suppose the inequality is true for    . We need to prove it for        
 



      
   
    

 

         
 
    

 

           
 

   , by base case 

 

                                   

 

   
             

 

   , by inductive hypothesis 

                                   

 

     
     

 

This completes the inductive step, and completes the proof of Claim 3.5.  □                                                 
 

 We can find       
 

    VDPs in each instance          by Proposition 1.1. So in all the instances 

        , we can find        

 

    VDPs in total.  

Now        

 

                
 

   
   

 
 

    
 by Claim 3.5, hence we can find   

   
 

  

    
  VDPs in total.  

This completes the proof of Theorem 1.1.                                                                                                      

                                                                                                                            
 

3.3.  Extending Theorem 1.1 to Theorem 1 

We briefly discuss here how to extend Theorem 1.1 to Theorem 1 (i.e. improving the number of paths 

from      
 

         to      
 

         ). The idea is to use a graph with large minimum degree 

instead of a clique minor. We begin with some definitions. 

Definitions:  

 Let    and    be a set of disjoint connected subgraphs in a given graph  . Denote by          

the intersection graph of    and   , defined as follows:          is the bipartite graph with 

partite sets    and    defined, which has one vertex for each element of    and   , and an edge 

between two vertices exists if the corresponding subgraphs in    and in    respectively, intersect. 

Thus there are      vertices in one partite set of the bipartite graph, and      vertices in the other 

partite set. For sets    and    of disjoint paths in  , we say that a pair         is a half-integral 

 - minor if          contains the graph   as a minor. If   contains such a pair        , we say 

that   has a half-integral  - minor. 

 The minimum degree      of a graph   is the degree of the vertex which has the least number of 

edges incident to it.  

Proof Sketch of Theorem 1:  

The idea is to first use the following lemma to obtain a minor with large minimum degree which can be 

used to do the routing: 

Lemma 3.6:  Let   is a graph. Given a  -web of order   in   with        for some constant  , there 

exists a randomized polynomial time algorithm to find either a half-integral  - minor, where   is a graph 

satisfying                  , or a    minor in  . Furthermore, if each of the   disjoint paths 

between    and    contains a terminal for distinct    , then every node of the obtained minor contains a 

terminal. 



The proof of Lemma 3.6 mostly relies on a well known result by Bollobás & Thomason [3, Lemma 3] 

and we will not say more about it here due to brevity of space. 

To prove Theorem 1, first the following proposition is proved: 

Proposition 1.2: In a well-linked instance       of MVDPP, we can find      
 

   VDPs with 

congestion two in polynomial time. 

Proof Sketch: Let Z be the terminal set. Apply Lemma 3.3 and Lemma 3.6 with         
 

    and 

      
 

   . Then we have an  - minor with                   in      whose each node 

contains a terminal, or a    minor in  , whose each node contains a terminal. If we have a    minor in  , 

then we can connect   terminal pairs by the same arguments as in the proof of Proposition 1.1. Hence we 

may assume that we have an  - minor with                   in       

Take    
  

 
  terminals in   and let   be the set of these terminals. It can be shown (by way of 

contradiction) that there is no separation       of order at most      in   such that   contains all the 

terminals and     contains at least one node of the   minor (if such a separation exists, it contradicts 

Lemma 3.1 in a way very similar to the one we saw in Claim 3.4). 

Now use the following theorem (in contrast to the RS-Theorem in the proof of Proposition 1.1): 

BT-Theorem (Bollobás-Thomason [2, Theorem 3]): Let          and          be terminals in a 

given graph  . If   contains   as a minor, where   is some graph satisfying               , and 

there is no separation       of order at most      in   such that   contains all the terminals and     

contains at least one node of the   minor, then there are VDPs    with two ends in       for           

So, we can connect   by   VDPs in      in polynomial time, which correspond to   VDPs in   with 

congestion two.   □ 

Given that Proposition 1.2 holds, Theorem 1 is proved in the same fashion as Theorem 1.1 was proved via 

Proposition 1.1 (by CKS-Theorem). 

 

3.4.  Brief Discussion on CKS-Theorem 

In this section, we give a brief sketch of the algorithm behind the CKS-Theorem because it is an essential 

ingredient of the proof of Theorem 1.1 and it is worthwhile to look into its details. The sketch we provide 

is fairly technical, and only highlights the main steps of the algorithm. Here, we consider a slightly 

different and more general form of the theorem which considers well-linkedness of a set in terms of 

(multi-commodity) flow, instead of cuts or size of neighborhoods. (It is safe to do so, because the 

algorithms for the two cases are quite similar). We begin with some definitions and then state the theorem 

to be proved, followed by a sketch of the decomposition algorithm. 

Definitions 

 Let           be a capacitated graph, where   is an integer capacity function on nodes (in the 

context of this report,     . Let                              } be a set of   source-sink 

pairs, where the  ’th pair has a non-negative demand    associated to it. Let   



           Then the multicommodity flow problem is to find the maximum number of paths that 

can route flow between the sources and their respective sinks such that the demand at each sink is 

satisfied, flow is conserved at every node and node capacities are not violated. The maximum 

concurrent flow for a given instance is the largest   such that    can be feasibly routed in  . The 

sparsity of a cut is the ratio of the capacity of the cut to the demand separated by the cut. The 

maxflow-mincut gap is the worst case ratio between these two quantities. 

 A product multicommodity flow instance is a special case, where   is induced by a weight 

function        on the nodes of    for                  . 

 Let   and   be as defined above. Let        denote the set of paths joining    and    in   and let 

      . The LP relaxation given below, called the ‘Multicommodity Flow Relaxation’, is 

used to obtain an upper bound on the number of pairs from   that can be routed in    For each 

path    , we have a variable      which is the amount of flow sent on  . Let    denote the 

total flow sent on paths for pair  . We let   denote the flow vector with a component for each path 

 . The LP relaxation is:  

max    
 
    

                 subject to: 

                                                                                    

    

           

                                                                                                   

      

 

                                                                                                           

 Given a non-negative weight function        on a set of nodes   in  ,   is    -flow-linked in 

  if there is a feasible multicommodity flow for the problem with demand                      

between every unordered pair of terminals        

Theorem 

Let     be a solution to the LP given above for a given instance       of MVDPP in a graph  . Let 

       be an upper bound on the worst case maxflow-mincut gap for product multicommodity flow 

problems in    Then there is a partition of  , computable in polynomial time, into vertex-disjoint induced 

subgraphs         and weight function              with the following properties. Let    be the 

induced pairs of   in    and let    be the set of terminals of   . 

1.                 for       

2.    is     -flow-linked in    

3.                             
    

Decomposition Algorithm Overview 

Without loss of generality, we can assume that all source and sink nodes in   are distinct. Start with a 

multi-commodity flow   for   in   with total flow value           View the flow for each pair as 

being decomposed into flow paths. Given a node-induced subgraph               of  , we let      



be the total flow induced in   by the original flow  . This means that      counts flow only on flow 

paths from the original flow path decomposition that are completely contained in    Given a node 

          let        denote the flow in   for  . By definition,      
 

 
                 

Then the goal of the algorithm, given   as input, is to output a node-induced subgraph partition of   into 

        with associated weight functions            . The algorithm is as follows: 

 

1. If                    let    be some pair with positive flow in  . Define     on      by 

                and          for        Stop and output   along with      
2. Otherwise, construct an instance of the product multicommodity flow problem on   with 

                   for    . Let   be the maximum concurrent flow for this instance.  

(i) if                     stop the recursive procedure. Let               
            . Output   and      

(ii) Otherwise find a vertex cut   such that its size is at most                . Recurse on 

the induced graphs      and         
 

It can be shown that properties 1 and 2 stated in the theorem are met in step 1 and step 2 (i) of the 

algorithm. To see why property 3 holds, note that the partitioning procedure defines a recursion tree, 

whose leaves are the graphs where we stop the recursion, either because the flow is sufficiently small or 

the concurrent flow for the product multicommodity flow that we set up is large enough. It can be proved 

that the flow lost in all the recursive step is at most       , from which it follows that         
   

 ( )/2. Then from the termination condition it follows that      (  )/10  log   ). From here, 

property 3 follows. This proves the theorem. 
  

4.  PROOF OF THEOREM 2 

 

In this section we return to the paradigm of EDPs (instead of VDPs). Section 4.1 gives the main idea and 

sketch of proof of Theorem 2. Section 4.2 gives the complete proof of Theorem 2. Section 4.3 gives an 

insight into the details of Rao-Zhou Theorem.  
 

4.1.  Proof Sketch of Theorem 2 

Given an instance of MEDPP, assume that there exists a randomized polynomial time Algorithm A that 

finds   
   

 
 

    
  EDPs for some      The idea is to make use of Rao-Zhou Theorem and prove Theorem 

2 in four main steps given below: 

1) In order to be able to use Rao-Zhou Theorem, we require our graph to have edge-connectivity at 

least        (i.e. the minimum cut in G should have size          ). To achieve this, we do the 

following: 

(i) if there exists a cut of size         which separates   into two parts   and   such that 

both   and   contain a terminal pair, recursively apply Rao-Zhou Theorem to   and   

respectively. Combine the solutions to   and   to get a solution in original graph  . 

(Lemma 4.1, part (i)). 

(ii) if there exists a cut of size         which seperates G into two parts   and   such that 

      and   contains no terminal pair, reduce   to     by applying some edge 



contractions and adding a few dummy edges to ‘small-degree vertices’ such that the 

resulting graph     is         -edge-connected. (Lemma 4.1 part (ii), Lemma 4.2). 
 

2) Obtain  
   

         
  EDPs in    . (Rao-Zhou Theorem) 

 

3) Construct a polynomial time Algorithm B which finds 
   

   
   
                

 paths in   that are 

edge-disjoint in the original graph G. 
 

4) Compare the number of paths found by Algorithm B to that found by Algorithm A. Output the 

higher number. 
 

 

4.2.  Proof of Theorem 2 

Consider the given instance of MEDPP and assume that there exists a randomized polynomial time 

Algorithm A that finds   
   

 
 

    
   EDPs for some    . For some fixed constants   and  , there are two 

possibilities for the value of OPT:  

        
 

                        
 

             

OR 

        
 

                        
 

             

Consider the first case. Since   
   

 
 

    
  EDPs can be found through Algorithm A, the approximation ratio 

is                              =  
   

  
   

 
 

    
 

 

                                         
   

 

     , for some constant   

                                          
   

  

                                           
   

   
   

        
      

   
 

     , since         
 

           

                                           
   

        
      

   , where    is a constant 

                                     
   

                   



This means that if         
 

           , the proof of theorem is complete. Therefore, for the 

remainder of this discourse, we assume that         
 

            for any  . In particular, we assume 

that         
 

            . 

We now prove some lemmas first, followed by the proof of Theorem 2. 

Lemma 4.1: Let there be a partition       of      such that              and              , 

where   is the constant as in Rao-Zhou Theorem. Let      and      be the optimal values of the 

MEDPP when we restrict the problem to      and      respectively. Let        and       . 

(i) If       ,      , and        for some        then  
    

  
  + 

    

  
  

   

   holds for sufficiently large  . It follows that combining an      -

approximation solution in      and an      -approximation solution in      gives an 

     -approximation solution in  .  

(ii) If        and      is connected, then   can be reduced to a smaller graph which contains 

at least     EDPs. 

 

Proof: Note that by virtue of              , we have that                         (since 

each edge in the cut      may result in a new EDP between a terminal pair having one end in   and the 

other in  ). 

(i)        Without loss of generality, we may assume that      . Let   be a constant such that        

There can be two cases: 

Case 1:            Then 

                                       
    

  
  

    

  
   

    

  
   

    

  
   

    

  
   

    

  
   

                                                                
  

      

  
   

   
    

  
  

    

  
   

    

  
    

                                                                 
   

   
         

  
  

          

  
   

                                                                 
           

  
   

           

  
   

                                                           
                   

  
   

   

   (since   
           

  
        

   ) 

                                                            
   

   (for sufficiently large  , the first term is non-negative) 

Case 2:            Then                              . Hence               and 

so we have    
    

     . So: 

                                                               
    

  
  

    

  
  



                                 
         

  
     since        implies 

    

  
   

    

  
  

                                                           
   

  
  

       

  
    

                                                           
   

    
  

 
   

   

  
   

   

  
  

       

  
   

                   
   

   
    

  

                  

  
      since   

  

 
     

  

     
     

                                                            
   

   

 

 
    

  

                 

  
   

                                                            
   

   for sufficiently large  . 

 

To go from the third last step to the second last step, we make use of the following fact from calculus: for 

a positive integer   with 
 

       
 

   and for    
  

    , we have: 

                               

                        
 

    since     and     implies      
 

    

                      
   

    
 
      

 
       

 

   

    since         
 

      
 

       
 

      
 

       
 

       
 

    

                     
   

   

                     
      

 
. 

From Case 1 and Case 2, we see that 
    

  
  + 

    

  
  

   

   holds for sufficiently large  . From this 

inequality and the fact that   
        and   

       , it follows that combining an      -

approximation solution in      and an      -approximation solution in      gives an      -

approximation solution in  . 
                                                                                                         

(ii)   Contract   to a single vertex by repeated edge-contractions. Since   has     EDPs and edge-

contractions do not decrease the number of EDPs in a graph, it follows that the reduced graph contains at 

least     EDPs.                                                                                                                                             
 

We now show that   can be reduced to a graph     with edge-connectivity at least       , so that the 

conditions for the Rao-Zhou Theorem are met. To achieve this, we present Lemma 4.2. 

Lemma 4.2:   can be reduced to a graph   , where    has the following properties: 

 If any partition       of       satisfies               (where   is the constant as in Rao-

Zhou Theorem) and both       and       are connected, then one of   or   is a single vertex 

 Each contracted vertex has degree at most       . 



Furthermore,    can be ‘augmented’ (via edge additions) to    , where     has edge-connectivity at least 

      . 

Proof: We first give a reduction from   to     

Step 1: Find a partition       of      such that              and              . If such partition 

exists, go to Step 2. Otherwise go to Step 3. 

Step 2: If        and       , divide the problem in the original graph   into two smaller sub-

problems on      and      and solve the sub-problems recursively. Then by virtue of Lemma 4.1 part 

(i), obtain a solution of the original instance by combining the solutions of the two sub-problems.  

Otherwise, we may assume without loss of generality that       . Contract each connected component 

of      to a single vertex. 

Go to Step 1. 

Step 3: Find a partition       of      such that      ,              ,        and       . If 

such a partition exists, then divide the problem in the original graph   into two smaller sub-problems on 

     and      and solve the sub-problems recursively. Then by virtue of Lemma 4.1 part (i), obtain a 

solution of the original instance by combining the solutions of the two sub-problems. 

Let the graph obtained at the end be called     It is clear from this reduction that if there exists a cut of 

size         in   , then we must have a single vertex on one of the sides of the cut (because we must 

have contracted one side of the cut in either step 2 or step 3). Also, each contracted vertex in    must have 

degree at most        (otherwise we would not have contracted it). It follows, from Lemma 4.1 part (ii), 

that    has at least     EDPs. 

Now we prove the second part of the lemma. Let    be the set of vertices of    with degree at most 

      . For each       arbitrarily pick an edge        and add               edges parallel to     

Let     be the obtained graph. Then clearly     has edge-connectivity at least       . Also note that any 

vertex in    has degree at most          in     (it may happen that for a vertex     , every edge 

incident to it gets replicated while replicating the edges of  ’s neighbors. Since   has degree at most 

       and each of its incident edges gets replicated at most        times, the claim follows). 

Since    has at least     EDPs and adding edges does not decrease the number of EDPs, it follows that 

    has at least     EDPs.                                                                                                                              

We now apply Rao-Zhou Theorem to    , which has the required edge-connectivity, and obtain 
   

         
 

EDPs    in     with high probability. The task now is to find the set    of  
   

   
   
               

  EDPs in     

such that no two paths in    share a vertex of    (because two paths sharing a contracted vertex of    in 

    may share an edge in  ). We present Algorithm B to find   .  Claim 4.3 shows that the set    found 

by Algorithm B has size at least 
      

   
   
               

 for some constant    and sufficiently large  .  

 

 



 
 

Algorithm B 

Input: 
   

         
  EDPs    in     

Goal: find the set    of  
   

   
   
               

  EDPs in     such that no two paths in    share a vertex of   . 

Step 0: Set      and     . 

Step 1: If    , output    and stop the algorithm. Otherwise take a path     through the minimum 

number of vertices in   . Add   to     

Step 2: Remove from   all paths sharing a vertex in    with  , and go to Step 1. 

 

Claim 4.3: For some constant   , the output    of Algorithm B satisfies         
   

  
   
           

 for 

sufficiently large  . Moreover, Algorithm B runs in polynomial time. 

Proof: Suppose   is sufficiently large.  

While      
    

 
, we can find a path     through at most 

          

   
 vertices in     Why is this so? If 

every path in    went through more than  
          

   
 vertices in   , then all the paths in   together would go through more than           vertices 

in   . Since each vertex in    has degree at most         , this would mean that somewhere in the paths 

in  , an edge is repeated. This contradicts the fact that   is a set of EDPs. 

Now  

       
          

   
  

   
          

    
              

    

 
  

  
                   

   
             

   

         
   

  
         

   
                  

 So we can find a path     through at most 
         

   
 vertices in   . Each of these vertices has degree at 

most         , hence   shares a vertex in    with at most          
         

   
  = 

           

   
 paths in    

Now         
 

             implies       
   

         
      

 

      . Since 
   

        

   
 paths are 

removed in every iteration, there exists a constant      such that  

   
   

  
   
           

   
   

        

   
    



      
  

 

               

  
    

 
  

This means that the iterations must be carried out    
   

  
   
           

  times before     falls below  
    

 
. 

This means    
   

  
   
           

  paths are added to    while      
    

 
.  

To prove that Algorithm B runs in polynomial time, notice that       
   

         
  is polynomial in size 

and the size of    is     . Step 1 takes at most      time and step 2 takes at most       
   time, and the 

number of iterations is at most     . So the overall running time is polynomial. This completes the proof 

of Claim 4.3. □ 

So we have    
   

  
   
           

  EDPs in    . Let    be their corresponding EDPs in      Also, let    be 

the   
   

 
 

    
  EDPs found by Algorithm A that we assume to exist in the statement of Theorem 2. If 

          , output   . Otherwise output   . 

This completes the proof of Theorem 2.                                                                                                         

 

4.3.  Brief Discussion on Rao-Zhou Theorem 

This section gives brief insight into the proof of Rao-Zhou Theorem used in the proof of Theorem 2. We 

begin with some definitions and then give the overview of the proof. 

Note: Some of the notions described here have been defined and used in Section 3.4. However, to keep 

these sections independent of each other, we redefine everything for the sake of easy readability. 

 

Definitions: 

 Given a non-negative weight function        on a set of nodes   in  ,   is  -cut-linked in   

if    such that                                               is called a  -cut-

linked instance. 

 For a cut           in a graph  , let      denote the set of edges with exactly one endpoint in 

 . Let                 denote the total capacity of edges in a cut. Then the edge expansion of 

a cut      , where          , is      
        

   
  The expansion of a graph   is the minimum 

expansion over all cuts in  .  

 A graph   is an expander if its expansion is at least a constant. 

Proof Overview: 



The idea is to first solve a fractional relaxation of the MEDPP, and based on its solution, the graph   is 

decomposed into disjoint subgraphs such that each subgraph is well-connected with respect to the set of 

terminals it contains. The key point of this decomposition is that only a constant number of terminal pairs 

are ‘lost’ this way, and the rest are still routable. To route them, an expander graph is constructed for each 

subgraph and it is embedded into  . Then a greedy algorithm is applied to route the set of terminal pairs 

in this embedded expander graph. A more detailed summary is given below. 

Let an instance of MEDPP consist of a graph         and a set of   terminal pairs 

                             }. Let        denote the set of paths joining    and    in  . Consider the 

fractional relaxation of the MEDPP, where each terminal pair can route a real-valued amount of flow 

between 0 and 1, and this flow can be split fractionally across a set of distinct paths. The LP relaxation 

given below is used to obtain an upper bound on the number of pairs from   that can be routed in    For 

each path   in some   , we have a variable      which is the amount of flow sent on  . We let    denote 

the total flow sent on paths for pair  . We let   denote the flow vector with a component for each path  . 

The LP relaxation is:  

max    
 
    

                 subject to: 

                                                                                    

    

           

                                                                                                

      

 

                                                                                                          

Let           be the value of this LP for the optimal fraction solution   of the LP. The Rao Zhou 

Algorithm routes a poly-logarithmic fraction of this value using EDPs via the following steps: 

1. Based on the value       the graph   is decomposed into subgraphs such that within each 

subgraph, the subset of terminal pairs is ‘well-connected’.  

 

Sketch of Decomposition: The decomposition is done via the following main theorem: 

Given an MEDPP instance       which has minimum cut          and a solution   to the 

fractional MEDPP problem with   ,    as in the LP given above, there is a polynomial time 

algorithm which produces a set of disjoint subgraphs and a weight function           on 

    , where: 

o             contributes the same amount of weight to       and       

o The set of nodes      in each subgraph   is  -cut-linked in   

o Each subgraph   has a minimum cut of          

o    in a subgraph   such that                       
  

                      

o           
    

        
   



To put it in simple words, this decomposition theorem simply says that if we sum across all 

subgraphs   of  , we get a sufficient fraction of terminal pairs in  , i.e. we lose only a constant 

fraction of the terminal pairs by assigning a zero weight to these lost terminals of  . Moreover, 

each subgraph   is well-connected with respect to  , the set of induced terminals of   in   i.e. 

      is a  -cut-linked instance.  

2. For each  -cut-linked instance       of  , construct an expander graph   that can be embedded 

into   using its terminal set. 

Construction: First split the graph   into   subgraphs            , each with the same weight 

function   on its vertex set         for all  , by extending a uniform sampling scheme from 

Karger [11] (Karger’s scheme requires that the minimum cut should have size at least         . 

This is where the main requirement of Rao-Zhou’s result, i.e. having         -edge-connectivity 

in the original graph, comes into play). This gives us a set of cut-linked instances 

           such that   is 
      

 
 -cut-linked in    for some      Now obtain a set   

             of vertex-disjoint ‘superterminals’, where each superterminal       consists of 

a subset of terminals in   and gathers a weight between   and     , where   is a parameter 

dependent on the number    (The idea of making superterminals is that each superterminal, which 

is a set of clustered terminals, is better connected than individual terminals). These superterminals 

are now used as vertices in the expander graph     The edges of   are defined using a technique 

([13]) that builds an expander using          matchings. This expander   is embedded into   

without any congestion by routing each matching in one of the split graphs using a maximum 

flow computation.  
 

3. Route terminal pairs in   greedily via short disjoint paths (which are abundant in an expander 

graph). The greedy method routes    
 

     
  pairs of terminals, where          

          in  .  

Greedy Algorithm: While there exists a pair       in     whose path length is less than a 

predetermined parameter   in        , remove both nodes and edges from   along the path 

through which we connect a pair of terminals in  . 

Clearly this algorithm induces no congestion because we delete a path between a terminal pair in each 

iteration. To show that the number of iterations (i.e. the number of paths routed by EDPs) is large enough, 

use the fact that when a path is taken away, all remaining terminal pairs in the expander must have 

distance at least  . This completes the proof sketch of Rao-Zhou Theorem.  

 

5.  CONCLUDING REMARKS 

This report has discussed, in detail, the    
 

             - approximation algorithm for the maximum 

edge-disjoint paths problem with congestion two, given by Kawarabayashi and Kobayashi [12]. The 

claimed approximation guarantee is a direct consequence of Theorem 1 and Theorem 2, as stated in 

Section 1.4. The result relies heavily on two results, given by Rao Zhou [16] and Chekuri et al. [4, 5]; this 

report has also discussed these two briefly.  



One possible way of getting the same approximation guarantee with congestion one is to prove that 

Theorem 1 holds with congestion one. However, the methods (based on well-linked sets) adopted by the 

authors to prove Theorem 1 do not hold for the case with congestion one. The reason is that their proof 

relies on the LP relaxation given by Chekuri et al. [4, 5], which has integrality gap of        So this LP 

relaxation would not work for an example instance which has       number of terminals.  

Recent results & open problems: In 2012, a randomized algorithm with an approximation guarantee of 

                for   terminal pairs and congestion at most 14 has been proposed [7]. This is a significant 

improvement over the previously known approximation guarantee of    
 

 
 
 for congestion at most a 

constant    It remains to be seen whether this algorithm can be improved further. Also, for congestion 

two, the question of whether the approximation guarantee of    
 

             can be improved remains 

to be open. 

 

********  
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