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1. Objectives and Layout 
 

This discourse aims to provide an in-depth summary of one of the early works (published in 

1998) by Dhruv Mubayi on Ramsey Theory. His article answers a question posed by P. Erdős 17 

years earlier. 

The article in question is highly concise and consists of just the proof of one theorem. In this 

paper, we aim to put the article in context by providing a background and a summary of the later 

works on the same topic. We also endeavor to improve its presentation and exposition by 

dividing the theorem into a lemma and a theorem, and explaining the proofs in greater detail by 

filling in the gaps that were (intentionally or otherwise) left by the author. In terms of technical 

rigor, a high premium is placed on the proof of the lemma and a major portion of the proof of 

theorem. 

The layout of this paper is as follows: Section 2 gives a background of how and when the 

problem was posed, and gives a summary of the preliminary results. Section 3 defines the 

problem by stating the lemma and the theorem to be proved. Section 4 provides a detailed proof 

of the lemma, and section 5 shows how the theorem follows easily from the lemma. Section 6 

gives a brief overview of later works on the topic. 

 

2. Background and Motivation 

Ramsey’s Theorem states that in any coloring of the edges of a sufficiently large complete graph, 

one will find monochromatic complete graphs. In formal terms: for positive integers   and  , 

there exists a positive integer   so that every  -edge-coloring of    has a monochromatic    (  

depends on   and   in general). Many different proofs of this statement exist, of varying 



elegance. The Classical Ramsey Problem (commonly known as the Party Problem) takes this 

problem one step ahead and asks for the minimum number   for which the statement holds: 

Classical Ramsey Problem: Find the minimum value of   such that every  -coloring of the edges 

of    yields a monochromatic   . 

This threshold value of   still remains unknown, but one can deduce that for every value of   

below this threshold, there exists a  -edge-coloring in which every    receives at-least two 

colors. In 1981, P. Erdős generated an interesting variation of this problem in [1] by fixing n and 

varying k, and asked the following question: 

For some fixed  ,   and  , find         , the minimum number of colors that are needed 

to color the edges of a given    such that every    receives atleast   colors 

[The original statement of the problem in [1] was slightly different but equivalent]. 

*Note: From here on, the term ‘coloring’ denotes edge-coloring, and the term ‘k-coloring’ 

denotes edge-coloring a graph with k colors. 

Erdős gave a few interesting preliminary results, for small values of   and  , to see if any 

patterns emerged. Two of them were: 

-                
    

    
 (i.e.    can be colored with     

    

    
  colors such that every 

   receives at-least 3 colors) 

-              ( ). 

It was found that determining the value of          for small values of  ,   led to problems of 

varying difficulty. For example, for      , the problem is equivalent to determining the 

classical Ramsey number for multi-colorings (as explained above), which is an open and hard 

problem. On the other hand,          is equivalent to giving a proper edge-coloring to   , 

which is exactly equal to the chromatic number of    (it is equal to   when   is odd, and     

when   is even). So we see that          is hard to compute, while computing          is very 

easy. 

So it was seen that the bounds on the results for small  ,   were not good enough to shed light on 

the solution of the general problem. For this reason, research in this area was abandoned for 15 

years, before Erdős and Gyárfás made another attempt in [2] at improving the bounds for small 

values of   and  . They used the Local Lemma technique, proposed in [3] to show that  

           

   

     
 
 
  (this is a probabilistic bound). In particular, they improved the result of [1] 

and showed that that                   They also determined, for each  , the smallest   such 

that          is linear in   and the smallest   such that           is quadratic in  . However, 



they were unable to solve many of the small cases, notably         , which they termed as ‘the 

most annoying problem among all the small cases’. 

This is where Dhruv Mubayi entered the arena. In the paper under discussion, Mubayi tackles 

this annoying small case of          and significantly improves its bound from a probabilistic 

      to a deterministic           as   grows large. 

 

3. Definition of the Problem 
 

Definition: For integers         a      -coloring of    is an edge-coloring of    in which every 

 -clique (i.e.   ) receives at-least   colors. Let          denote the minimum number of colors 

in a      -coloring of   . 

Mubayi presents the proofs of the following lemma and theorem: 

Lemma: Let G be a complete graph on   
 
  vertices, for             Then there exists a 

coloring of G that uses at most             colors. 

Theorem:                                         . 

Note: The probabilistic bound          =        by Erdős used a random (4,3)-coloring of   . 

Mubayi shows that the optimal (4,3)-coloring of    uses much fewer colors, and he shows how 

to construct this optimal coloring.  

 

4. The Lemma 
 

In this section, we give an explicit way of coloring a complete graph G, such that at most 

            colors are used. First we give some definitions, followed by the method of 

construction and coloring of graph. This is followed by the actual proof of the lemma, which 

consists of two parts. 

Definitions 

1.     denotes the set              

2. The symmetric difference of sets   and   is                  

3. For integers    ,     
 
  denotes the family of all t-sized-subsets (called t-subsets) of 

   . 

Construction and coloring of the graph 



Let G be the complete graph on   
 
  vertices. Let           

 
  and for each t-subset T of    , 

rank the      proper subsets of T by some linear order. (One possible way to do this is: for 

each T, map its set of proper subsets to the set of first      Natural numbers.) For any two 

vertices   and   in G (each of which is a t-subset of  ), let the color of edge    be a two-

dimensional vector 

         c0      c1      

where 

c0                      . 

Set 

S =  
                 

                 
  

Let        be the rank of      in the linear order associated with the proper subsets of S. 

Claim 1: This coloring is a (4,3)-coloring of G.  

Claim 2: In this construction, the number of colors used is at most            . 

Proof of Claim 1: 

We first show that there cannot be monochromatic triangles in G. We then proceed to show that 

there can only be two types of 2-colored   ’s possible in G, and that G does not contain either of 

them. This proves that we have a (4,3)-coloring on G. 

As a first step, we observe that there are no monochromatic triangles in G. Otherwise, if     

was one such triangle, where             then let            Without loss of generality, 

suppose      Then     (otherwise      , hence       , a contradiction to the 

definition of c0    ). Since              , we have that                 . Also,   

  means      Now     and    , which implies      , so           Hence         

         which contradicts the fact that     is a monochromatic triangle. Hence there are no 

monochromatic triangles in G.  

Since monochromatic triangles are forbidden, the only types of 2-colored K4’s that can occur are 

those shown in the figure below: 



 

We show by proofs of contradiction that both types of   ’s cannot occur in  . 

Type 1: Here one color class is the path     , and the other is the path     . Suppose 

        . Then there are two possible cases: 

Case 1:      Then by the argument made above,    . This implies that    , and in turn 

      

We now show that         =          

Suppose          . Since   is the smallest element    ,         implies       . 

Now     and       , so        Therefore         and     imply that     

       Hence                  .  

Now let          . Since   is the smallest element    ,         implies       . 

Now     and       , so        Therefore         and     imply that     

       Hence                  . So we have shown that 

        =        . 

Using the same argument, since              ,     and    , we can deduce that 

        =        . 

Finally,               and     and     imply that  

        =        . 

Therefore,  

        =                 =                                                                        (1) 

We have that     and    , so (1) implies       =        So        , hence                      

            .  Thus the minimum element in (     must be greater than  , so        

    On the other hand, we know that     and    , and by (1) we have          , so   is 



the minimum element in      Hence           So                   Hence       

       This contradicts the fact that the path      is monochromatic. 

Case 2:      Then by the argument made above,     and      . We reverse the labels on 

the path     : 

 

Then we get     and      , which puts us back in case 1. 

Therefore, a 2-colored    of Type 1 cannot occur in G. 

Type 2:  

Here one color class is the 4-cycle     , while the other contains the edges    and   . By 

symmetry, we may assume that            (if           , then just reverse the labels 

of   and  ). Similarly, we may assume that           . Since              , 

          . Thus                     

Since          , we have 

                           

            = (               

                       = (                     (by DeMorgan’s Law) 

                                  = (A           (by definition of set subtraction) 

Hence                           . This implies that  

1.        lies in   and does not lie in  , therefore      , hence        is the rank     

in  . Similarly,  

2.        lies in   and does not lie in  , therefore      , hence        is the rank     

in  . 



Since               , we see that the two sets     and     have equal rank in  . Recall 

that our definition of ranks imposed a linear order on distinct subsets of a given set. Hence, two 

subsets in   may have equal rank if and only if they are equal. This implies 

                                                                                                                                     (2) 

We now repeat the process with interchanging  ’s and  ’s roles: assume that            

and           . Since              ,           . Thus              

       

Since            = (           , we have that                     

      . This implies that  

1.        lies in   and does not lie in  , therefore      , hence        is the rank of 

    in  . Similarly,  

2.        lies in   and does not lie in  , therefore      , hence        is the rank of 

    in  . 

Since               , we see that the two sets     and     have equal rank in  . This 

implies 

                                                                                                                                             (3) 

Because              , let                   We know that  

                 or      

and 

                or     

Hence, there are 4 possibilities for  : 

1.                          .  

    implies               =  , which is a contradiction. 

 

2.                          . 

    implies               =  , which is a contradiction. 

 

3.                          . 

    implies               =  , which is a contradiction. 

 

4.                           

(3) implies               =  , which is a contradiction. 



Hence a 2-colored     of Type 2 cannot occur in G. 

This completes the proof of Claim 1. 

Proof of Claim 2: 

i. First we show that the function    can attain atmost     distinct values in G. 

Observe that for any edge   ,     cannot be empty (otherwise          , hence 

      which contradicts the fact that all vertices of   are distinct). This implies     has at-

least 1 element. Furthermore,     cannot have exactly one element. To see this, suppose 

    has exactly one element      . Then                 and            , so 

         , which contradicts the fact that every vertex of   has equal cardinality (i.e.  ). 

Therefore     must have at-least two elements. 

Recall that the function    maps an edge    onto the minimum element in          .    can 

attain any value from 1 to     (Note:    can never equal  , because if      , then   

will always be the largest element in    , and we just showed that     always contains at-

least 2 elements, so    will take the other value). Hence the total number of possible values of    

is    . 

ii. Now we show that the function    can attain at-most      distinct values in G. 

Observe that    maps an edge    onto the rank of     in either   or  . Since the total number 

of proper subsets of a t-subset   of     is     , the total number of possible rank values of    

is at-most     . The range of ranks is the same for every edge, hence the function    attains at 

most      distinct values. 

Conclusion: Since the coloring function       is an ordered pair of        and       , the 

total number of distinct values it can attain is              This completes the proof of 

Claim 2. 

5.   The Theorem 

To prove the theorem statement for a given  , we choose the optimal values of   and   such that 

the final result falls within the desired bound. These optimal values are as follows: set   

 
     

     
   and choose   such that   

 
        

 
 . To proceed with the proof, we make note of 

the following facts: 

Fact 1:   is a non-decreasing function of  . 

Proof: Let     be some fixed integers. Suppose   is a decreasing function of  . Then for some   

and  , where    ,                  . Let    and    be the corresponding graphs on     



and     vertices respectively. This means a lesser number of colors is required to give the bigger 

graph    a (4,3)-coloring. However, this coloring is a (4,3)-coloring on the smaller graph    as 

well, which is a contradiction to                  . Hence   is a non-decreasing function of 

 . 

Fact 2: For         
 

 
     

 
 . 

Proof:      implies       for any     ,    . 

Hence –       . Adding    on both sides gives us               . So 

             . Therefore  

                                                                       
 

 
  

   

   
, for                                                    (4) 

Now   
 
  

                       

  
  

 

 
  

   

   
  

   

   
  

   

   
    

     

 
  

    
 

 
  

 

 
  

 

 
      

 

 
     by (4) 

    
 

 
   

So    
 

 
     

 
 . This completes the proof of Fact 2. 

The proof of the theorem now follows easily from the Lemma, Fact 1, Fact 2 and our choices for 

  and  . We have: 

                               
 
         by Fact 1 

             by the Lemma 

         

Now     
 
   

 

 
   by Fact 2, therefore  

 

  
 

 
, and this gives us     

 

 .  

So we have                                                   

      
 

  

Finally it can be shown, using non-graph-theoretic techniques, that 

     
 

                         
               

                       . 



Therefore,                                         . This completes the proof of the 

theorem. 

 

6.    Subsequent Works 

 

Not long after this article was published, Mubayi came out with another article ([7]), in which he 

proved that the construction used in this article has the property that at-least          colors 

appear on the edges of every copy of    in  , for       

These results by Mubayi helped prove many other cases of the original problem posed by Erdős, 

as well as other related problems. For instance, it was proved in [5] that              
 

 
      . 

The proof used similar construction and coloring techniques as in this article. [4] also used 

Mubayi’s result to show that if            for a fixed positive constant  , then no matter how 

the edges of    are colored, there is a copy of    that receives at-most two colors. In [6], M. 

Axenovich proved a tight bound on         , another small case of the original problem and 

termed as annoying.  

Recently in [8], Fox and Sudakov rephrased the          problem in terms of another, more 

convenient, function as follows: Let      be the largest   for which there is a  -coloring of    

such that every    receives at least 3 colors, i.e., for which              . Then Mubayi’s 

result is the best known lower bound on      (i.e.                   for a positive constant  ). 

[4] provides an upper bound on it:                [8] provides a better upper bound on it: 

          However, there is still a very large gap between the lower and upper bound for this 

problem, and as research continues on this particular problem, the conjecture is that the correct 

growth of     is likely to be subexponential in  . 
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