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AlphaGo by Google DeepMind

• Go: ancient Chinese board game. Simple rules, but far more complicated than 
Chess

• Oct ‘15: defeated Fan Hui (2-dan European Go champion)  5 – 0

(news delayed till January 2016 to coincide with the publication in Nature)

• Mar ‘16: defeated Lee Se-dol (9-dan South Korean Go player)  4 – 1

• “Last night was very gloomy… Many people drank alcohol”: South Korean 
newspaper after Lee’s first defeat



Before AlphaGo

The strongest previous Go programs were all based on Monte Carlo Tree Search 
(MCTS)

• Crazy Stone – 2006

• Mogo – 2007

• Fuego – 2010

• Pachi – 2012
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Game Tree

• Optimal value of a node = best possible value the node’s player can guarantee for himself

• Optimal value function: 𝑓(𝑛𝑜𝑑𝑒) → 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑣𝑎𝑙𝑢𝑒



Monte Carlo Simulations

Q: How do we estimate the value of a node?



Monte Carlo Simulations

Q: How do we estimate the value of a node?

Idea: 
• Run several simulations from that node  

by sampling actions from a policy distribution

𝑎𝑡~ 𝑝(𝑎|𝑠)

• Average the rewards from the simulations 

to obtain a Monte Carlo value estimate of 

the node



Monte Carlo Tree Search (MCTS)

1. Selection: Select the action leading to the node with 
highest value in the tree

2. Evaluation/Rollout: When a leaf is encountered in the 
tree, use a stochastic policy to select actions for both players, 
till the game terminates

3. Backup/Update: Update the statistics (# of visits, # of 
wins, prior probability) for each node of the tree visited 
during Selection phase

4. Growth: The first new node visited in the rollout phase is 
added to the tree, and its stats are initialized

Combine Monte Carlo simulations with game tree search
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MCTS: Advantages over Exhaustive Search

• The rollouts reduce the tree search breadth by sampling actions from a policy

• As more simulations are executed, the tree grows larger and the relevant values 
become more accurate, converging to optimal values

• The policy also improves over time (by selecting nodes with higher values), 
converging to optimal play



MCTS: Challenges

• Need to choose a good simulation policy that approximately chooses the optimal 
actions

• Need to estimate the value function based on the chosen policy



MCTS: Challenges

• In previous works, simulation policy has been chosen by training over human 
expert moves, or through reinforcement learning via self-play. 

• Achieve superhuman performance in backgammon and scrabble, but only 
amateur level play in Go

• Reliance on a linear combination of input features



AlphaGo

Leverage the power of deep convolutional neural networks (CNNs) in MCTS

1. Policy network to compute a simulation policy 𝑝(𝑎|𝑠)

2. Value network to compute node values 𝑣(𝑠)



AlphaGo Training Architecture

Main Components:

1. A Supervised Learning (SL) policy network 𝑝σ(𝑎|𝑠) (as well as a fast but less 
accurate rollout policy 𝑝π(𝑎|𝑠) ) 

2. A Reinforcement Learning (RL) policy network  𝑝𝜌(𝑎|𝑠)

3. A value network 𝑣θ(𝑠)



1.   SL Policy Network

Goal: Predict the human expert’s action at each step

Training Set: 30 million (𝑠, 𝑎) pairs

Input: Simple features – stone color, #liberties, #turns, etc

Output: a probability distribution 𝑝𝜎(𝑎|𝑠) over all 

legal actions in state 𝑠

Architecture: 13 layers; alternating between convolutional 

layers with weights σ and layers containing rectifiers

Objective: Maximize the likelihood 𝑝𝜎(𝑎|𝑠) using stochastic gradient ascent:
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1.   Rollout Policy

• Architecture: A linear softmax of small pattern features with weights 𝜋

• Output: a probability distribution 𝑝𝜋(𝑎|𝑠) over all legal actions available in state 𝑠



AlphaGo Training Architecture

Main Components:

1. A Supervised Learning (SL) policy network 𝑝σ(𝑎|𝑠) (as well as a fast but less 
accurate rollout policy 𝑝π(𝑎|𝑠) ) 

2. A Reinforcement Learning (RL) policy network  𝑝ρ(𝑎|𝑠)

3. A value network 𝑣θ(𝑠)



2.   RL Policy Network

Structure: Same as SL policy network, with 

weights 𝜌 initialized to σ

Goal: Improve the SL policy network through 

reinforcement learning

Output: a probability distribution 𝑝𝜌(𝑎|𝑠) over 

all legal actions available in state 𝑠

Objective: Play 𝑝𝜌against a randomly selected previous iteration. Update 

weights through stochastic gradient ascent to maximize expected outcome:
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3.   Value Network

Structure: Similar to SL/RL policy network with weights θ

Goal: Estimate the value function 𝑣𝑝(𝑠) to predict outcome

at state 𝑠, using policy 𝑝 for both players:

Data: 30 million (𝑠, 𝑧) pairs, from games played between 

RL network and itself

Output: a single prediction value 𝑣𝜃(𝑠) ≈ 𝑣𝑝(𝑠) ≈ 𝑣∗(𝑠)

Objective: minimize MSE between 𝑣𝜃(𝑠) and outcome 𝑧 through SGD:
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SETUP: MCTS in AlphaGo

Each edge (𝑠, 𝑎) of the search tree stores:

- 𝑄(𝑠, 𝑎): the action value

- 𝑁(𝑠, 𝑎): visit count

- 𝑃(𝑠, 𝑎): prior probability

- 𝑢(𝑠, 𝑎): exploration bonus



MCTS in AlphaGo
At time step 𝑡:

1. Selection: 

2. Evaluation: When a leaf 𝑠𝐿 is encountered in the tree:

- set 𝑃(𝑠, 𝑎): = 𝑝𝜎/𝜌(𝑎|𝑠) for each edge

- evaluate the node:                                            , where 𝑧𝐿 = outcome of a random rollout using 𝑝𝜋

3. Update: Update the statistics of the visited edges:

4. Growth: When 𝑁(𝑠, 𝑎) for a node 𝑠’, add the node to the tree, initialize it to all zeros and set 

𝑃(𝑠′, 𝑎): = 𝑝𝜎/𝜌(𝑎|𝑠′)
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Resource Usage

Final version of AlphaGo:

• 40 search threads, 48 CPUs  (for simulation)

• 8 GPUs (to compute policy and value networks)

Distributed version:

• 40 search threads, 1202 CPUs

• 176 GPUs


