Mastering the Game of Go With Deep
Neural Networks and Tree Search

Nabiha Asghar
27t May 2016



AlphaGo by Google DeepMind

Go: ancient Chinese board game. Simple rules, but far more complicated than
Chess

Oct “15: defeated Fan Hui (2-dan European Go champion) 5—-0

(news delayed till January 2016 to coincide with the publication in Nature)

Var “16: defeated Lee Se-dol (9-dan South Korean Go player) 4 -1

|//_

“Last night was very gloomy... Many people drank alcohol”: South Korean

newspaper after Lee’s first defeat



Before AlphaGo

The strongest previous Go programs were all based on Monte Carlo Tree Search
(MCTS)

Crazy Stone — 2006
Mogo — 2007/
Fuego — 2010
Pachi—2012



Game Tree




Game Tree




Game Tree

* Optimal value of a node = best possible value the node’s player can guarantee for himself

* Optimal value function: f(node) — optimal value



Monte Carlo Simulations

Q: How do we estimate the value of a node?



Monte Carlo Simulations

Q: How do we estimate the value of a node?

ldea:
e Run several simulations from that node
by sampling actions from a policy distribution

a,~ p(als)

* Average the rewards from the simulations

to obtain a Monte Carlo value estimate of |
the node 9/10 3/10 4/10




Monte Carlo Tree Search (MCTS)

Combine Monte Carlo simulations with game tree search

1. Selection: Select the action leading to the node with
highest value in the tree

2. Evaluation/Rollout: When a leaf is encountered in the
tree, use a stochastic policy to select actions for both players,
till the game terminates

1
3. Backup/Update: Update the statistics (# of visits, # of
wins, prior probability) for each node of the tree visited
during Selection phase
4. Growth: The first new node visited in the rollout phase is 5

added to the tree, and its stats are initialized




MCTS: Advantages over Exhaustive Search

* The rollouts reduce the tree search breadth by sampling actions from a policy

* As more simulations are executed, the tree grows larger and the relevant values
become more accurate, converging to optimal values

* The policy also improves over time (by selecting nodes with higher values),
converging to optimal play



MCTS: Challenges

* Need to choose a good simulation policy that approximately chooses the optimal
actions

* Need to estimate the value function based on the chosen policy



MCTS: Challenges

* |n previous works, simulation policy has been chosen by training over human
expert moves, or through reinforcement learning via self-play.

* Achieve superhuman performance in backgammon and scrabble, but only
amateur level play in Go

* Reliance on a linear combination of input features



AlphaGo

Leverage the power of deep convolutional neural networks (CNNs) in MCTS

1. Policy network to compute a simulation policy p(als)

2. Value network to compute node values v(s)



AlphaGo Training Architecture

Main Components:

1. ASupervised Learning (SL) policy network p_ (als) (as well as a fast but less
accurate rollout policy p_(a|s) )

2. AReinforcement Learning (RL) policy network p,(als)

3. Avalue network v,(s)



1. SL Policy Network

Goal: Predict the human expert’s action at each step

Training Set: 30 million (s, @) pairs




1. SL Policy Network

Goal: Predict the human expert’s action at each step L & -
Training Set: 30 million (s, @) pairs i

o
Input: Simple features — stone color, #liberties, #turns, etc :

Qutput: a probability distribution p_(als) over all

legal actions in state s




1. SL Policy Network

Goal: Predict the human expert’s action at each step

Training Set: 30 million (s, @) pairs

Input: Simple features — stone color, #liberties, #turns, etc
Qutput: a probability distribution p_(al|s) over all

legal actions in state s

Architecture: 13 layers; alternating between convolutional

layers with weights o and layers containing rectifiers
Objective: Maximize the likelihood p(a|s) using stochastic gradient ascent:

dlog p (a|s)
o

o X



1. Rollout Policy

* Architecture: A linear softmax of small pattern features with weights 7T

* Output: a probability distribution p_(a|s) over all legal actions available in state s




AlphaGo Training Architecture

Main Components:

1. ASupervised Learning (SL) policy network p_ (als) (as well as a fast but less
accurate rollout policy p_(a|s) )

2. AReinforcement Learning (RL) policy network p,(a|s)

3. Avalue network v,(s)



2. RL Policy Network

Structure: Same as SL policy network, with

weights p initialized to o




2. RL Policy Network

Structure: Same as SL policy network, with
weights p initialized to o

Goal: Improve the SL policy network through
reinforcement learning




2. RL Policy Network

Structure: Same as SL policy network, with

weights p initialized to o

Goal: Improve the SL policy network through
reinforcement learning

Output: a probability distribution p ,(a|s) over

all legal actions available in state s



2. RL Policy Network

Structure: Same as SL policy network, with

weights p initialized to o

Goal: Improve the SL policy network through

reinforcement learning

Output: a probability distribution p ,(a|s) over

all legal actions available in state s

Objective: Play P, against a randomly selected previous iteration. Update

weights through stochastic gradient ascent to maximize expected outcome:

dlo als
Apox gp,(a I)zf
dp




AlphaGo Training Architecture

Main Components:

1. ASupervised Learning (SL) policy network pc(a|S) (as well as a fast but less

accurate rollout policy p_(a|s) ) /
2. A Reinforcement Learning (RL) policy network pp(a|S) /

3. Avalue network v4(s) = v7(s)



3. Value Network a

Structure: Similar to SL/RL policy network with weights ©




3. Value Network j

Structure: Similar to SL/RL policy network with weights ©

Goal: Estimate the value function v?(s) to predict outcome

at state s, using policy p for both players: vP(s)=Elzs;=s, a;._.r~p]




3. Value Network o

Structure: Similar to SL/RL policy network with weights 6

Goal: Estimate the value function v?(s) to predict outcome

at state s, using policy p for both players: vP(s)=Elzs;=s, a;._.r~p]

Data: 30 million (s, z) pairs, from games played between

RL network and itself

Output: a single prediction value v,(s) = vP(s) = v*(s)




3. Value Network o

Structure: Similar to SL/RL policy network with weights ©

Goal: Estimate the value function v?(s) to predict outcome

at state s, using policy p for both players: vP(s)=Elzs;=s, a;._.r~p]

Data: 30 million (s, z) pairs, from games played between

RL network and itself

Output: a single prediction value v,(s) = vP(s) = v*(s)

Objective: minimize MSE between v,(s) and outcome z through SGD:

Z2) (e vi)

Al ox



AlphaGo Training Architecture

Main Components:

1. A Supervised Learning (SL) policy network p_(a|s) (as well as a fast but less
accurate rollout policy p_(a|s) )

2. AReinforcement Learning (RL) policy network p,(als) /
3. Avalue network v4(s) = v7(s) /



AlphaGo Training Architecture

Main Components:

1. A Supervised Learning (SL) policy network p_(a|s) (as well as a fast but less
accurate rollout policy p_(a|s) ) 50 GPUS 3 woeks

2. AReinforcement Learning (RL) policy network p,(a|s) / 50 GPUS, 1 day

3. Avalue network v4(s) = v7(S) /
50 GPUs, 1 week




AlphaGo Training Architecture

Main Components:

1. A Supervised Learning (SL) policy network p_(a|s) (as well as a fast but less
accurate rollout policy p_(a|s) ) 50 GPUS 3 woeks

2. AReinforcement Learning (RL) policy network p(a|s) / 50 GPUS, 1 day

3. Avalue network v4(s) = v7(S) /
50 GPUs, 1 week

PUT [T ALL TOGETHER USING MCTS



SETUP: MCTS in AlphaGo

Each edge (s, a) of the search tree stores:

- Q (s, a): the action value
- N (s, a): visit count
- P(s, a): prior probability
- u(s, a): exploration bonus
P(s,a)
1+ N(s,a)

u(s,a) o



MCTS in AlphaGo

At time step t:

1. Selection: |a,=argmax(Q(s;,a)+ u(s;.a))




MCTS in AlphaGo

At time step t:

1. Selection: |a,=argmax(Q(s;,a)+ u(s;.a))

il

2. Evaluation: When a leaf s, is encountered in the tree:
-set P(s;, a):= pg/p(als,) for each edge

- evaluate the node| V(sz) = (1 — A)vu(sz) + Az |, where z; = outcome of a random rollout using p,,




MCTS in AlphaGo

At time step t:

1. Selection: |a,=argmax(Q(s;,a)+ u(s;.a))

il

2. Evaluation: When a leaf s, is encountered in the tree:
-set P(s,a):= pg/p(als) for each edge

- evaluate the node| V(sz) = (1 — A)vu(sz) + Az |, where z; = outcome of a random rollout using p,,

L]

3. Update: Update the statistics of the visited edges: N(s,a)=Y"1(s,a,i)

i=1

1 & , i
NGea) E 1(s,a,i)V(s})

Q(s,a)=




MCTS in AlphaGo

At time step t:

1. Selection: |a,=argmax(Q(s;,a)+ u(s;.a))

il

2. Evaluation: When a leaf s, is encountered in the tree:
-set P(s,a):= pg/p(als) for each edge

- evaluate the node| V(sz) = (1 — A)vu(sz) + Az |, where z; = outcome of a random rollout using p,,

L]

3. Update: Update the statistics of the visited edges: N(s,a)=Y"1(s,a,i)

i=1
1

N(s

Q(s,a)= 2 i l(s,a,f)V(si)

A. Growth: When N(s,a) > threshold for a node s’, add the node to the tree, initialize it to all zeros and set
P(s',a):= ps/p(als’)




Resource Usage

Final version of AlphaGo:
e 40 search threads, 48 CPUs (for simulation)

* 8 GPUs (to compute policy and value networks)

Distributed version:
e 40 search threads, 1202 CPUs
e 176 GPUs



