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Human-Computer Conversation

Human-computer conversation has long attracted interest in both
academia and industry.

Task/Domain-oriented systems

Open-domain conversation systems
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Task/Domain-Oriented Dialog Systems

Transportation domain: TRAIN-95 (Ferguson et al., 1996)

Education: AutoTutor (Graesser et al., 2005)

Restaurant booking (Wen et al., 2016)

Approaches:

Planning

Rule-based, Slot-filling, etc.
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Open-Domain Conversation

Why is chatbot-like conversation important?

Tackles the problem of natural language understanding and
generation

Commercial needs

Approaches:

Retrieval-based systems (Isbell et al., 2000; Wang et al., 2013)

Generative systems

Phrase-based machine translation (Ritter et al., 2011)
Neural networks (seq2seq models) (Shang et al., 2015)
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Where are we?

Open-domain, neural network-based, generative short-text
conversation
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Sequence-to-Sequence (Seq2Seq) Models

Encoder-Decoder framework

Encodes the “user-issued utterance” (query)
Decodes the corresponding reply

Recurrent Neural Network (w/ LSTM)

Serving as the encoder and decoder

   where  are    you    from                    I      am   from  Grenoble

     I      am   from  Grenoble France
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Shortcoming of Seq2Seq Models

Short, boring, meaningless replies

I don’t know

Me too

Previous work

Diversity-promoting training (Li et al., 2016) and
decoding (Vijayakumar et al., 2016)
Content-introducing approaches (Mou et al., 2016)

However, they do not consider affect/emotional modeling of
conversation.
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Our Paper . . .

Explicitly models affect by psychologically inspired VAD
embeddings

Valence: the pleasantness of a stimulus
Arousal: the intensity of emotion produced by a stimulus
Dominance: the degree of power exerted by a stimulus

Incorporates affective computing in the following aspects
Affective embeddings
Affective loss function
Affectively diverse decoding

Input: Affective word embeddings

Training: Affective loss functions

Inference: Affectively diverse beam search

Seq2Seq
w/ LSTM
Units
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Basic Model

Seq2Seq Model x 7→ y

Input of RNN: word embeddings, mapping discrete words to
real-valued vectors

Training: cross-entropy loss (XENT)

LXENT(θ) = − log p(Y |X) = −
n∑

i=1

log p(yi|y1, ..., yi−1, X)

Inference: Max a posteriori inference

y = arg max
Y

{log pXENT(Y |X)}
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Overview

Affective embeddings

Affective loss function

Affectively diverse decoding

Input: Affective word embeddings

Training: Affective loss functions

Inference: Affectively diverse beam search

Seq2Seq
w/ LSTM
Units
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Affective Embeddings

Traditional word embeddings (e.g., word2vec)

Learned by co-occurrence
Hard to capture sentiment information

E.g., “The book is interesting” vs “The book is boring”

We leverage VAD vectors as external affect information

Psychologically engineered, Human annotated
Three dimension, representing

Valence: the pleasantness of a stimulus
Arousal: the intensity of emotion produced by a stimulus
Dominance: the degree of power exerted by a stimulus
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VAD Examples

The simplest way to use VAD:

Feed VAD to RNNs as input

Concatenate VAD with traditional word embeddings

Intuition:

Explicitly modeling words with affective information
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Affective Loss Function

Cross-entropy loss (XENT)

LXENT(θ) = − log p(Y |X) = −
n∑

i=1

log p(yi|y1, ..., yi−1, X)

Affective loss

LAffect(θ) = LXENT + Non-Affective Penalty

Intuition:

Explicitly modeling affective interaction between speakers
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Affective Loss Function

Attempt#1: Minimizing Affective Dissonance
Two utterances tend to have the same VAD vectors

Li
DMIN(θ) = −(1− λ) log p(yi|y1, ..., yi−1, X)

+ λp(yi)

∥∥∥∥ |X|∑
j=1

W2AV(xj)

|X|
−

i∑
k=1

W2AV(yk)

i

∥∥∥∥
2

Attempt#2: Maximizing Affective Dissonance
Two utterances tend to have different VAD vectors

Li
DMAX(θ) = −(1− λ) log p(yi|y1, ..., yi−1, X)

− λp(yi)
∥∥∥∥ |X|∑

j=1

W2AV(xj)

|X|
−

i∑
k=1

W2AV(yk)

i

∥∥∥∥
2
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Affective Loss Function

Attempt#3: Maximizing Affective Content

Li
AC(θ) =− (1− λ) log p(yi|y1, ..., yi−1, X)

− λ p(yi)
∥∥W2AV(yi)− η

∥∥
2

where η is the VAD for non-affective words.

Note:

The affective embeddings are not learnable

Hard selection is not differentiable

Relax it by predicted probability
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Affectively Diverse Decoding

The inference process decodes a sequence of words as the
response.

Greedy search: The best choice for each step may not be the
best for the whole

Beam search (BS): Keep top-B candidates and perform
dynamic programming

Diverse BS (DBS): Consider not only probability but also
other scoring functions (e.g., diversity)

Affectively DBS (ADBS): Measure the diversity in terms of
VAD vectors
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Diverse Beam Search

Y g
[t] = arg max

yg
1,[t]

,...,yg
B′,[t]

∈Y g
[t−1]

×V

[ B′∑
b=1

t∑
i=1

log p(ygb,i|y
g
b,[i−1], X)

+ λg∆(Y 1
[t], ..., Y

g−1
[t] )[ygb,t]

]

Maintain G groups

Have B subsequences at each time step

Expand the subsequence with one step (the vocabulary)

Keep top-B subsequences after this time step
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Affectively Diverse Beam Search

The design of the ∆ function

Attempt#1: Word Level

∆W (Y 1
[t], ..., Y

g−1
[t] )[ygb,t] = −

g−1∑
j=1

B′∑
c=1

sim
(
W2AV(ygb,t), W2AV(yjc,t)

)
Attempt#2: Sentence Level

∆S(Y 1
[t], ...,Y

g−1
[t] )[ygb,t] =

g−1∑
j=1

B′∑
c=1

sim
(
Ψ(ygb,[t]),Ψ(yjc,[t])

)
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Dataset and Settings

Cornell Movie Dialogs Corpus

∼300k utterance-response pairs

1024d word2vec and hidden states

For other tedious settings, please see arXiv:1709.03968
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Evaluation

Human annotation for 100 test samples

5 annotators

3 aspects

Syntactic coherence (Does the response make grammatical
sense?)
Naturalness (Could the response have been plausibly produced
by a human?)
Emotional appropriateness (Is the response emotionally
suitable for the prompt?)

3 scores: 0=bad, 1=borderline, 2=good

Feiss’ κ = 0.44 (Moderate agreement)
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Experiment#1: Affective Embeddings

Model
Syntactic

Natural
Emotional

Coherence Approp.

Word embed. 1.48 0.69 0.41

Word + Affective
1.71 1.05 1.01

embeddings.

Word embeddings learned end-to-end during training are not
sufficient to capture emotional aspects

Using additional VAD knowledge makes the model more aware
of affect
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Experiment#2: Affective Loss Function

Model
Syntactic

Natural
Emotional

Coherence Approp.

LXENT 1.48 0.69 0.41

LDMIN 1.75 0.83 0.56

LDMAX 1.74 0.85 0.58

LAC 1.71 0.95 0.71

DMAX and DMIN not as good as maximizing affective content
(AC)

The interaction of affect is more complicated than forcing it
to some direction

Future work: incorporating the “affect control theory” (Hoey
et al., 2016)
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Experiment#3: Affectively Diverse Beam Search

Model
Syntactic Affective No. of Emotionally
Diversity Diversity Approp. Responses

BS 1.23 0.87 0.89

H-DBS† 1.47 0.79 0.78

WL-ADBS 1.51 1.25 1.30

SL-ADBS 1.45 1.31 1.33
†Hamming-based beam search

Annotation is performed on top-3 decoded sentences.
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Putting all together

Model Syntactic Naturalness Emotional
Coherence Appropriateness

Pure Seq2Seq 1.48 0.69 0.41

Seq2Seq + Affective Embeddings 1.71 1.05 1.01

Seq2Seq + Affective Embeddings & Loss 1.76 1.03 1.07

Seq2Seq + Affective Embeddings & Loss & Decoding 1.69 1.09 1.10
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Case Study

Message Model Response

LXENT Um, you know...
LDMIN But you work for the casino?

I wish LDMAX You are personally responsible.
I was a LAC It’s suicide!
billion- LXENT+ Aff. Emb. Don’t trouble yourself about it.
aire. LAC+ Aff. Emb. Would it matter in the end.

LAC+ Aff. Emb.
Would it change you?

+ SL-ADBS

I hate

LXENT It was supposed to be.

you.

LDMIN Aww c all guys do...
LDMAX Keeps fairies away!
LAC I haven’t done anything crazy.
LXENT+ Aff. Emb. Don’t say that!
LAC+ Aff. Emb. I still love you!
LAC+ Aff. Emb.

I don’t want to fight you.
+ SL-ADBS
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Conclusion

Our paper: Affective neural response generation

Affective embeddings

Affective loss functions

Affectively diverse beam search

Future work: Affective interactive/human-in-the-loop conversation
with affective control theory
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Thanks for listening

Question?
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