Affective Conversation	Experiments	Conclusion	References
Affective Neura	l Response C	eneration	
			Affective Conversation Experiments Conclusion Affective Neural Response Generation

Nabiha Asghar,¹ Pascal Poupart,¹ Jesse Hoey,¹ Xin Jiang,² Lili Mou¹

¹University of Waterloo ²Noah's Ark Lab, Huawei Technologies

ECIR-18, Grenoble, France March, 2018

U Waterloo & Huawei

< □ > < ---->

Introduction	Affective Conversation	Experiments	Conclusion	References
Outline				

1 Introduction

- 2 Affective Conversation
- 3 Experiments
- 4 Conclusion

・ロト・日本・モト・モー しょうべつ

Asghar, Poupart, Hoey, Jiang & Mou Affective Neural Response Generation U Waterloo & Huawei

Introduction	Affective Conversation	Experiments	Conclusion	References
Outline				

1 Introduction

2 Affective Conversation

3 Experiments

4 Conclusion

Asghar, Poupart, Hoey, Jiang & Mou Affective Neural Response Generation U Waterloo & Huawei

Image: A matrix of the second seco

Human-Computer Conversation

Human-computer conversation has long attracted interest in both academia and industry.

- Task/Domain-oriented systems
- Open-domain conversation systems

Image: A matrix and a matrix

Task/Domain-Oriented Dialog Systems

- Transportation domain: TRAIN-95 (Ferguson et al., 1996)
- Education: AutoTutor (Graesser et al., 2005)
- Restaurant booking (Wen et al., 2016)

Approaches:

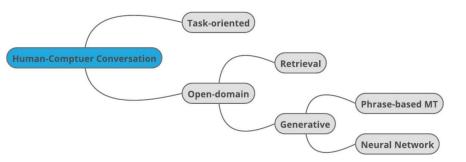
- Planning
- Rule-based, Slot-filling, etc.

U Waterloo & Huawei

Why is chatbot-like conversation important?

- Tackles the problem of natural language understanding and generation
- Commercial needs
- Approaches:
 - Retrieval-based systems (Isbell et al., 2000; Wang et al., 2013)
 - Generative systems
 - Phrase-based machine translation (Ritter et al., 2011)
 - Neural networks (seq2seq models) (Shang et al., 2015)

Introduction	Affective Conversation	Experiments	Conclusion	References
Where a				
vviicie e				



Open-domain, neural network-based, generative short-text conversation

Image: A math a math

U Waterloo & Huawei

Encoder-Decoder framework

- Encodes the "user-issued utterance" (query)
- Decodes the corresponding reply
- Recurrent Neural Network (w/ LSTM)
 - Serving as the encoder and decoder

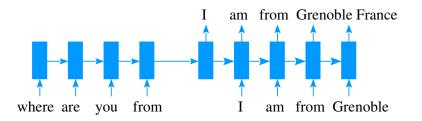


Image: A matrix and a matrix

Shortcoming of Seq2Seq Models

Short, boring, meaningless replies

- I don't know
- Me too
- Previous work
 - Diversity-promoting training (Li et al., 2016) and decoding (Vijayakumar et al., 2016)
 - Content-introducing approaches (Mou et al., 2016)

Shortcoming of Seq2Seq Models

Short, boring, meaningless replies

- I don't know
- Me too
- Previous work
 - Diversity-promoting training (Li et al., 2016) and decoding (Vijayakumar et al., 2016)
 - Content-introducing approaches (Mou et al., 2016)

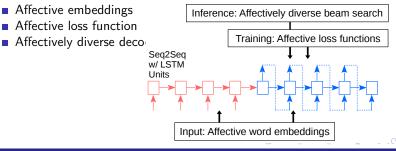
However, they do not consider affect/emotional modeling of conversation.

- Explicitly models affect by psychologically inspired VAD embeddings
 - Valence: the pleasantness of a stimulus
 - Arousal: the intensity of emotion produced by a stimulus
 - Dominance: the degree of power exerted by a stimulus

Image: A math a math

Introduction	Affective Conversation	Experiments	Conclusion	References
Our Paper				

- Explicitly models affect by psychologically inspired VAD embeddings
 - Valence: the pleasantness of a stimulus
 - Arousal: the intensity of emotion produced by a stimulus
 - Dominance: the degree of power exerted by a stimulus
- Incorporates affective computing in the following aspects



U Waterloo & Huawei

Introduction	Affective Conversation	Experiments	Conclusion	References
Outline				

1 Introduction

- 2 Affective Conversation
- **3** Experiments
- 4 Conclusion

・ロト・日本・ キャー モー もくの

U Waterloo & Huawei

Introduction	Affective Conversation	Experiments	Conclusion	References
Basic Mod	el			

 $\mathsf{Seq2Seq}\ \mathsf{Model}\ \mathbf{x}\mapsto \mathbf{y}$

- Input of RNN: word embeddings, mapping discrete words to real-valued vectors
- Training: cross-entropy loss (XENT)

$$L_{\text{XENT}}(\theta) = -\log p(Y|X) = -\sum_{i=1}^{n} \log p(y_i|y_1, ..., y_{i-1}, X)$$

■ Inference: Max a posteriori inference

$$\mathbf{y} = \underset{Y}{\arg\max}\{\log p_{\mathtt{XENT}}(Y|X)\}$$

Image: A math a math

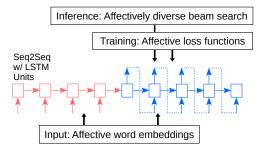
U Waterloo & Huawei

Asghar, Poupart, Hoey, Jiang & Mou

Affective Neural Response Generation

Introduction	Affective Conversation	Experiments	Conclusion	References
Overview				

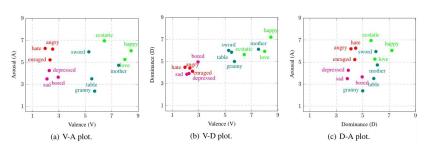
- Affective embeddings
- Affective loss function
- Affectively diverse decoding



Asghar, Poupart, Hoey, Jiang & Mou Affective Neural Response Generation Image: A math a math

- Traditional word embeddings (e.g., word2vec)
 - Learned by co-occurrence
 - Hard to capture sentiment information
 - $\mathsf{E}.\mathsf{g}.,$ "The book is interesting" vs "The book is boring"
- We leverage VAD vectors as external affect information
 - Psychologically engineered, Human annotated
 - Three dimension, representing
 - Valence: the pleasantness of a stimulus
 - Arousal: the intensity of emotion produced by a stimulus
 - Dominance: the degree of power exerted by a stimulus

Image: A match a ma



The simplest way to use VAD:

- Feed VAD to RNNs as input
- Concatenate VAD with traditional word embeddings

Intuition:

Explicitly modeling words with affective information

Asghar, Poupart, Hoey, Jiang & Mou Affective Neural Response Generation Image: A matrix of the second seco

Cross-entropy loss (XENT)

$$L_{\text{XENT}}(\theta) = -\log p(Y|X) = -\sum_{i=1}^{n} \log p(y_i|y_1, ..., y_{i-1}, X)$$

Affective loss

 $L_{\texttt{Affect}}(\theta) = L_{\texttt{XENT}} + \texttt{Non-Affective Penalty}$

Image: A math a math

U Waterloo & Huawei

Intuition:

Explicitly modeling affective interaction between speakers

Attempt#1: Minimizing Affective Dissonance Two utterances tend to have the same VAD vectors

$$\begin{split} L^{i}_{\text{DMIN}}(\theta) &= -(1-\lambda)\log p(y_{i}|y_{1},...,y_{i-1},X) \\ &+ \lambda p(y_{i}) \bigg\| \sum_{j=1}^{|X|} \frac{\text{W2AV}(x_{j})}{|X|} - \sum_{k=1}^{i} \frac{\text{W2AV}(y_{k})}{i} \bigg\|_{2} \end{split}$$

U Waterloo & Huawei

Image: A math a math

Attempt#1: Minimizing Affective Dissonance Two utterances tend to have the same VAD vectors

$$\begin{split} L^{i}_{\text{DMIN}}(\theta) &= -(1-\lambda) \log p(y_{i}|y_{1},...,y_{i-1},X) \\ &+ \lambda p(y_{i}) \bigg\| \sum_{j=1}^{|X|} \frac{\text{W2AV}(x_{j})}{|X|} - \sum_{k=1}^{i} \frac{\text{W2AV}(y_{k})}{i} \bigg\|_{2} \end{split}$$

Attempt#2: Maximizing Affective Dissonance Two utterances tend to have different VAD vectors

$$\begin{split} L^{i}_{\text{DMAX}}(\theta) &= -(1-\lambda) \log p(y_{i}|y_{1},...,y_{i-1},X) \\ &- \lambda p(y_{i}) \bigg\| \sum_{j=1}^{|X|} \frac{\text{W2AV}(x_{j})}{|X|} - \sum_{k=1}^{i} \frac{\text{W2AV}(y_{k})}{i} \bigg\|_{2} \end{split}$$

Attempt#3: Maximizing Affective Content

$$\begin{split} L_{\text{AC}}^{i}(\theta) &= -\left(1-\lambda\right)\log p(y_{i}|y_{1},...,y_{i-1},X) \\ &-\lambda \; p(y_{i})\big\|\text{W2AV}(y_{i}) - \pmb{\eta}\big\|_{2} \end{split}$$

where η is the VAD for non-affective words.

Image: A math a math

Attempt#3: Maximizing Affective Content

$$\begin{split} L_{\text{AC}}^{i}(\theta) &= -\left(1-\lambda\right)\log p(y_{i}|y_{1},...,y_{i-1},X) \\ &-\lambda \; p(y_{i})\big\|\text{W2AV}(y_{i}) - \pmb{\eta}\big\|_{2} \end{split}$$

where η is the VAD for non-affective words.

Note:

- The affective embeddings are not learnable
- Hard selection is not differentiable
- Relax it by predicted probability

Image: A matrix A

The inference process decodes a sequence of words as the response.

- Greedy search: The best choice for each step may not be the best for the whole
- Beam search (BS): Keep top-B candidates and perform dynamic programming
- Diverse BS (DBS): Consider not only probability but also other scoring functions (e.g., diversity)

Image: A matrix A

The inference process decodes a sequence of words as the response.

- Greedy search: The best choice for each step may not be the best for the whole
- Beam search (BS): Keep top-B candidates and perform dynamic programming
- Diverse BS (DBS): Consider not only probability but also other scoring functions (e.g., diversity)
- Affectively DBS (ADBS): Measure the diversity in terms of VAD vectors

Image: A match a ma

$$\begin{split} Y^g_{[t]} = \mathop{\arg\max}_{\substack{\mathbf{y}^g_{1,[t]},...,\mathbf{y}^g_{B',[t]} \\ \in Y^g_{[t-1]} \times V}} \left[\sum_{b=1}^{B'} \sum_{i=1}^t \log p(y^g_{b,i} | \mathbf{y}^g_{b,[i-1]}, X) + \lambda_g \Delta(Y^1_{[t]},...,Y^{g-1}_{[t]}) [y^g_{b,t}] \right] \end{split}$$

- Maintain G groups
- Have B subsequences at each time step
- Expand the subsequence with one step (the vocabulary)

Image: A matrix of the second seco

U Waterloo & Huawei

■ Keep top-B subsequences after this time step

The design of the Δ function

Attempt#1: Word Level

$$\Delta_W(Y^1_{[t]},...,Y^{g-1}_{[t]})[y^g_{b,t}] = -\sum_{j=1}^{g-1}\sum_{c=1}^{B'} \sin\left(\mathsf{W2AV}(y^g_{b,t}),\mathsf{W2AV}(y^j_{c,t})\right)$$

Attempt#2: Sentence Level

$$\Delta_{S}(Y_{[t]}^{1}, ..., Y_{[t]}^{g-1})[y_{b,t}^{g}] = \sum_{j=1}^{g-1} \sum_{c=1}^{B'} \sin\left(\Psi(\mathbf{y}_{b,[t]}^{g}), \Psi(\mathbf{y}_{c,[t]}^{j})\right)$$

U Waterloo & Huawei

Asghar, Poupart, Hoey, Jiang & Mou

Affective Neural Response Generation

Introduction	Affective Conversation	Experiments	Conclusion	References
Outline				

1 Introduction

- **2** Affective Conversation
- 3 Experiments

4 Conclusion

4 日 > 4 日 > 4 日 > 4 日 > 1 日 の 4 0

Asghar, Poupart, Hoey, Jiang & Mou Affective Neural Response Generation U Waterloo & Huawei

- Cornell Movie Dialogs Corpus
- \sim 300k utterance-response pairs
- 1024d word2vec and hidden states
- For other tedious settings, please see arXiv:1709.03968

Image: A matrix of the second seco

Introduction	Affective Conversation	Experiments	Conclusion	References
Evaluation				

Human annotation for 100 test samples

- 5 annotators
- 3 aspects
 - Syntactic coherence (Does the response make grammatical sense?)
 - Naturalness (Could the response have been plausibly produced by a human?)

U Waterloo & Huawei

- Emotional appropriateness (Is the response emotionally suitable for the prompt?)
- 3 scores: 0=bad, 1=borderline, 2=good

Feiss' $\kappa = 0.44$ (Moderate agreement)

Image: A math a math

Experiment#1: Affective Embeddings

Model	Syntactic Coherence	Natural	Emotional Approp.
Word embed.	1.48	0.69	0.41
Word + Affective embeddings.	1.71	1.05	1.01

- Word embeddings learned end-to-end during training are not sufficient to capture emotional aspects
- Using additional VAD knowledge makes the model more aware of affect

Image: A math a math

Experiment#2: Affective Loss Function

Model	Syntactic Coherence	Natural	Emotional Approp.
L _{XENT}	1.48	0.69	0.41
L_{DMIN}	1.75	0.83	0.56
L_{DMAX}	1.74	0.85	0.58
L_{AC}	1.71	0.95	0.71

- DMAX and DMIN not as good as maximizing affective content (AC)
- The interaction of affect is more complicated than forcing it to some direction
- Future work: incorporating the "affect control theory" (Hoey et al., 2016)

Asghar, Poupart, Hoey, Jiang & Mou Affective Neural Response Generation U Waterloo & Huawei

Experiment#3: Affectively Diverse Beam Search

Model	Syntactic Diversity	Affective Diversity	No. of Emotionally Approp. Responses
BS	1.23	0.87	0.89
H-DBS [†]	1.47	0.79	0.78
WL-ADBS	1.51	1.25	1.30
SL-ADBS	1.45	1.31	1.33

[†]Hamming-based beam search

Annotation is performed on top-3 decoded sentences.

Asghar, Poupart, Hoey, Jiang & Mou Affective Neural Response Generation U Waterloo & Huawei

Image: A math a math

Putting all together

Model	Syntactic	Naturalness	Emotional
	Coherence		Appropriateness
Pure Seq2Seq	1.48	0.69	0.41
Seq2Seq + Affective Embeddings	1.71	1.05	1.01
Seq2Seq + Affective Embeddings & Loss	1.76	1.03	1.07
Seq2Seq + Affective Embeddings & Loss & Decoding	1.69	1.09	1.10

Introduction	Affective Conversation	Experiments	Conclusion	References
Case Stu	dv			
	ay			

Message	Model	Response
	L_{XENT}	Um, you know
	L _{DMIN}	But you work for the casino?
I wish	L _{DMAX}	You are personally responsible.
l was a	L_{AC}	It's suicide!
billion-	L_{XENT} + Aff. Emb.	Don't trouble yourself about it.
aire.	L_{AC} + Aff. Emb.	Would it matter in the end.
	$L_{AC}+$ Aff. Emb.	Would it change you?
	+ SL-ADBS	would it change you.
	L_{XENT}	It was supposed to be.
	L_{DMIN}	Aww c all guys do
	L_{DMAX}	Keeps fairies away!
I hate	L_{AC}	I haven't done anything crazy.
you.	L_{XENT} + Aff. Emb.	Don't say that!
	L_{AC} + Aff. Emb.	I still love you!
	L_{AC} + Aff. Emb. + SL-ADBS	I don't want to fight you.

Asghar, Poupart, Hoey, Jiang & Mou

Affective Neural Response Generation

Introduction	Affective Conversation	Experiments	Conclusion	References
Outline				

1 Introduction

2 Affective Conversation

3 Experiments

4 Conclusion

Asghar, Poupart, Hoey, Jiang & Mou Affective Neural Response Generation U Waterloo & Huawei

Introduction	Affective Conversation	Experiments	Conclusion	References
Conclusion	n .			

Our paper: Affective neural response generation

- Affective embeddings
- Affective loss functions
- Affectively diverse beam search

Future work: Affective interactive/human-in-the-loop conversation with affective control theory

- George Ferguson, James Allen, and Brad Miller. 1996. TRAINS-95: Towards a mixed-initiative planning assistant. In AIPS. pages 70–77.
- Arthur C Graesser, Patrick Chipman, Brian C Haynes, and Andrew Olney. 2005. AutoTutor: An intelligent tutoring system with mixed-initiative dialogue. *IEEE Trans. Education* 48(4):612–618.
- Jesse Hoey, Tobias Schröder, and Areej Alhothali. 2016. Affect control processes: Intelligent affective interaction using a partially observable markov decision process. *Artificial Intelligence* 230:134–172.
- Charles Lee Isbell, Michael Kearns, Dave Kormann, Satinder Singh, and Peter Stone. 2000. Cobot in LambdaMOO: A social statistics agent. In AAAI. pages 36–41.
- Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2016. A diversity-promoting objective function for neural conversation models. In NAACL. pages 110–119.
- Lili Mou, Yiping Song, Rui Yan, Ge Li, Lu Zhang, and Zhi Jin. 2016. Sequence to backward and forward sequences: A content-introducing approach to generative short-text conversation. In *COLING*. pages 3349–3358.
- Alan Ritter, Colin Cherry, and William B Dolan. 2011. Data-driven response generation in social media. In EMNLP. pages 583–593.
- Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neural responding machine for short-text conversation. In ACL-IJCNLP. pages 1577–1586.
- Ashwin K Vijayakumar, Michael Cogswell, Ramprasath R Selvaraju, Qing Sun, Stefan Lee, David Crandall, and Dhruv Batra. 2016. Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:1610.02424.
- Hao Wang, Zhengdong Lu, Hang Li, and Enhong Chen. 2013. A dataset for research on short-text conversations. In *EMNLP*. pages 935–945.
- Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Lina M Rojas-Barahona, Pei-Hao Su, Stefan Ultes, David Vandyke, and Steve Young. 2016. A network-based end-to-end trainable task-oriented dialogue system. arXiv preprint arXiv:1604.04562.

Asghar, Poupart, Hoey, Jiang & Mou

Affective Neural Response Generation

Introduction	Affective Conversation	Experiments	Conclusion	References
Thanks fo	or listening			

Question?

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 … 釣�?

Asghar, Poupart, Hoey, Jiang & Mou Affective Neural Response G<u>eneration</u> U Waterloo & Huawei