Learning Dialogue Generation using Human Feedback

Nabiha Asghar MAT-Lab Group Meeting, January 11th, 2017

Motivation

- Conversational Agents are all the rage these days
- 2016: Year of the Bots, Year of Conversational Commerce
- Generative Dialogue Models based on Deep Neural Networks
 - Recurrent Networks / LSTM Networks: language modeling (2010, 2012)
 - Sequence to Sequence Framework: machine translation, text summarization, dialogue (Google, 2014)
 - Memory Networks: question answering, language modeling, dialogue (Facebook AI, 2015)
- Limitations of Offline Supervised Learning
 - Short and dull responses, not interesting/engaging
 - Irrelevant, contextually inappropriate, incorrect (if domain-specific)

Goals

- Idea: learn conversational skills like humans, through continuous interaction/feedback
 - Reinforcement Learning, Active Learning with humans in the loop
 - no need to label/annotate huge datasets
 - avoid explicit incorporation of interestingness, relevance, diversity in responses
- Need to explore different types of human involvement/feedback as well as learning strategies
 - "Dialog-based Language Learning", Jason Weston (Facebook AI), NIPS, December 2016
 - "Dialogue Learning with Human-In-The-Loop", Li et al. (Facebook AI), submitted to ICLR 2016
 - Simple QA on short passages or a set of facts

10 Modes of Supervision (Weston, 2016)

human/expert bot/learner

Task 1: Imitating an Expert Student	Task 2: Positive and Negative Feedback							
Mary went to the hallway.	Mary went to the hallway.							
John moved to the bathroom.	John moved to the bathroom.							
Mary travelled to the kitchen.	Mary travelled to the kitchen.							
Where is Mary? A:kitchen	Where is Mary? A:playground							
Where is John? A:bathroom	No, that's incorrect.							
	Where is John? A:bathroom							
	Yes, that's right! (+)							
Task 3: Answers Supplied by Teacher	Task 4: Hints Supplied by Teacher							
Mary went to the hallway.	Mary went to the hallway.							
John moved to the bathroom.	John moved to the bathroom.							
Mary travelled to the kitchen.	Mary travelled to the kitchen.							
Where is Mary? A:bedroom	Where is Mary? A:bathroom							
No, the answer is kitchen.	No, they are downstairs.							
Where is John? A:bathroom	Where is John? A:kitchen							
Correct! (+)	No, they are upstairs.							

10 Modes of Supervision (cont'd)

human/expert bot/learner

Task 5: Supporting Facts Supplied by Teacher

Mary went to the hallway. John moved to the bathroom. Mary travelled to the kitchen. Where is Mary? A:kitchen Yes, that's right! (+) Where is John? A:hallway No, because John moved to the bathroom.

Task 7: No Feedback

Mary went to the hallway. John moved to the bathroom. Mary travelled to the kitchen. Where is Mary? A:kitchen Yes, that's right! Where is John? A:bathroom Yes, that's correct!

Task 6: Partial Feedback

Mary went to the hallway. John moved to the bathroom. Mary travelled to the kitchen. Where is Mary? A:kitchen Yes, that's right! Where is John? A:bathroom Yes, that's correct! (+)

Task 8: Imitation and Feedback Mixture

Mary went to the hallway. John moved to the bathroom. Mary travelled to the kitchen. Where is Mary? A:kitchen Where is John? A:bathroom That's right! (+)

10 Modes of Supervision (cont'd)

human/expert bot/learner

Task 9: Asking For Corrections

Mary went to the hallway. John moved to the bathroom. Mary travelled to the kitchen. Where is Mary? A:kitchen Yes, that's right! (+) Where is John? A:hallway No, that's not right. A:Can you help me? Bathroom.

Task 10: Asking For Supporting Facts

Mary went to the hallway. John moved to the bathroom. Mary travelled to the kitchen. Where is Mary? A:kitchen Yes, that's right! (+) Where is John? A:hallway No, that's not right. A:Can you help me? A relevant fact is John moved to the bathroom.

Memory Networks

Hop #1:

$$o_1 = \sum_i p_i^1 m_i, \quad p_i^1 = \text{Softmax}(q^\top m_i).$$
$$u_1 = R_1(o_1 + q)$$

Hop #2:

$$o_2 = \sum_i p_i^2 m_i, \ p_i^2 = \text{Softmax}(u_1^\top m_i)$$

 $u_2 = R_2(o_2 + u_1)$

Final output:

$$\hat{a} = \operatorname{Softmax}(u_2^{\mathsf{T}} A y_1, \dots, u_2^{\mathsf{T}} A y_C)$$

> Imitation Learning

• Essentially supervised learning (message-context-response triples, cross entropy loss function)

➤ Imitation Learning

• Essentially supervised learning (message-context-response triples, cross entropy loss function)

Reward-based Imitation (RBI)

• Supervised learning (with cross entropy loss) only on rewarded actions. Discard the rest

> Imitation Learning

• Essentially supervised learning (message-context-response triples, cross entropy loss function)

Reward-based Imitation (RBI)

• Supervised learning (with cross entropy loss) only on rewarded actions. Discard the rest

➢ Forward Prediction (FP)

• Given an utterance x from Speaker #1 and answer a by the Learner, predict the response \bar{x} of Speaker #1

Forward Prediction

Hop #1:

$$o_1 = \sum_i p_i^1 m_i, \quad p_i^1 = \text{Softmax}(q^\top m_i).$$

 $u_1 = R_1(o_1 + q)$
Hop #2:
 $o_2 = \sum_i p_i^2 m_i, \quad p_i^2 = \text{Softmax}(u_1^\top m_i)$
 $u_2 = R_2(o_2 + u_1)$

Hop #3:

$$o_3 = \sum_i p_i^3 (Ay_i + \beta^* [a = y_i]), \quad p_i^3 = \text{Softmax}(u_2^\top Ay_i)$$

 $u_3 = R_3(o_3 + u_2)$

Final output:

 $\hat{x} = \operatorname{Softmax}(u_3^{\top} A \bar{x}_1, \dots, u_3^{\top} A \bar{x}_{\bar{C}})$

Forward Prediction


```
\hat{x} = \operatorname{Softmax}(u_3^{\top} A \bar{x}_1, \dots, u_3^{\top} A \bar{x}_{\bar{C}})
```

Forward Prediction

Imitation Learning

• Essentially supervised learning (message-context-response triples, cross entropy loss function)

Reward-based Imitation (RBI)

• Supervised learning (with cross entropy loss) only on rewarded actions. Discard the rest

Forward Prediction (FP)

- Given an utterance x from Speaker #1 and answer a by the Learner, predict the response \bar{x} of Speaker #1
- \circ Cross-entropy loss between $ar{x}$ and \hat{x} ,

Imitation Learning

• Essentially supervised learning (message-context-response triples, cross entropy loss function)

Reward-based Imitation (RBI)

• Supervised learning (with cross entropy loss) only on rewarded actions. Discard the rest

Forward Prediction (FP)

- Given an utterance x from Speaker #1 and answer a by the Learner, predict the response \bar{x} of Speaker#1
- \circ Cross-entropy loss between $ar{x}$ and \hat{x}

Reward-based Imitation + Forward Prediction (RBI+FP)

• Mixture of 2 and 3. Shared weights. Use both criteria for gradient descent.

Data

- **bAbI dataset**: short stories from a simulated world followed by questions
- For each of the 10 supervision tasks, consider a fixed policy for answering questions which gets questions correct with probability π_{acc} .

Evaluation on bAbI dataset

	MemN2N			MemN2N			MemN2N					
	imitation			reward-based			forward			MemN2N		
	learning			imitation (RBI)			prediction (FP)			RBI + FP		
Supervision Type $\pi_{acc} =$	0.5	0.1	0.01	0.5	0.1	0.01	0.5	0.1	0.01	0.5	0.1	0.01
1 - Imitating an Expert Student	100	100	100	100	100	100	23	30	29	99	99	100
2 - Positive and Negative Feedback	79	28	21	99	92	91	93	54	30	99	92	96
3 - Answers Supplied by Teacher	83	37	25	99	96	92	99	96	99	99	100	98
4 - Hints Supplied by Teacher	85	23	22	99	91	90	97	99	66	99	100	100
5 - Supporting Facts Supplied by Teacher	84	24	27	100	96	83	98	99	100	100	99	100
6 - Partial Feedback	90	22	22	98	81	59	100	100	99	99	100	99
7 - No Feedback	90	34	19	20	22	29	100	98	99	98	99	99
8 - Imitation + Feedback Mixture	90	89	82	99	98	98	28	64	67	99	98	97
9 - Asking For Corrections	85	30	22	99	89	83	23	15	21	95	90	84
10 - Asking For Supporting Facts	86	25	26	99	96	84	23	30	48	97	95	91
Number of completed tasks ($\geq 95\%$)	1	1	1	9	5	2	5	5	4	10	8	8

Table 1: Test accuracy (%) on the Single Supporting Fact bAbI dataset for various supervision approachess (training with 1000 examples on each) and different policies π_{acc} . A task is successfully passed if $\geq 95\%$ accuracy is obtained (shown in blue).

Interesting Result: Forward Prediction (predicting the teacher's feedback) works nicely, even though it doesn't use human-labeled rewards

L'varuation on or tor uataset

	MemN2N			MemN2N			MemN2N					
	imitation			reward-based			forward			MemN2N		
	learning			imitation (RBI)			prediction (FP)			RBI + FP		
Supervision Type $\pi_{acc} =$	0.5	0.1	0.01	0.5	0.1	0.01	0.5	0.1	0.01	0.5	0.1	0.01
1 - Imitating an Expert Student	100	100	100	100	100	100	23	30	29	99	99	100
2 - Positive and Negative Feedback	79	28	21	99	92	91	93	54	30	99	92	96
3 - Answers Supplied by Teacher	83	37	25	99	96	92	99	96	99	99	100	98
4 - Hints Supplied by Teacher	85	23	22	99	91	90	97	99	66	99	100	100
5 - Supporting Facts Supplied by Teacher	84	24	27	100	96	83	98	99	100	100	99	100
6 - Partial Feedback	90	22	22	98	81	59	100	100	99	99	100	99
7 - No Feedback	90	34	19	20	22	29	100	98	99	98	99	99
8 - Imitation + Feedback Mixture	90	89	82	99	98	98	28	64	67	99	98	97
9 - Asking For Corrections	85	30	22	99	89	83	23	15	21	95	90	84
10 - Asking For Supporting Facts	86	25	26	99	96	84	23	30	48	97	95	91
Number of completed tasks ($\geq 95\%$)	1	1	1	9	5	2	5	5	4	10	8	8

Table 1: Test accuracy (%) on the Single Supporting Fact bAbI dataset for various supervision approachess (training with 1000 examples on each) and different policies π_{acc} . A task is successfully passed if $\geq 95\%$ accuracy is obtained (shown in blue).

- Use Reinforcement Learning policy instead of fixed policies π_{acc}
- Online and incremental learning (i.e. weights updated after each reward is received)

- Use Reinforcement Learning policy instead of fixed policies π_{acc}
- Online and incremental learning (i.e. weights updated after each reward is received)
- Consider Task 6 ("partial feedback") only: the teacher replies with positive textual feedback (6 possible templates) when the bot answers correctly, and positive reward is given only 50% of the time. When the bot is wrong, the teacher gives textual feedback containing the answer.

- Use Reinforcement Learning policy instead of fixed policies π_{acc}
- Online and incremental learning (i.e. weights updated after each reward is received)
- Consider Task 6 ("partial feedback") only: the teacher replies with positive textual feedback (6 possible templates) when the bot answers correctly, and positive reward is given only 50% of the time. When the bot is wrong, the teacher gives textual feedback containing the answer.
- Learning Models: RBI, FP, and **REINFORCE** (0 and 1)
- Difference between RBI and REINFORCE: former imitates correct behaviour only, latter leverages incorrect behaviour too

