
Continuous Data Cleaning

Presenter: Nabiha Asghar

 M. Volkovs, F. Chiang, J. Szlichta and R. J. Miller

 ICDE 2014

Outline

• Introduction and motivation

• Main contributions of the paper

• Description of architecture and techniques

• Experimental evaluation (brief)

• Concluding thoughts

2

Introduction & Motivation

So far we have seen data repair

algorithms:

  assume that a given set of

constraints is correct

  search for least cost repairs

satisfying the constraints

  typically use heuristics, sampling

and statistical inference to reduce

the space of possible solutions

 e.g. papers 2.1.2 (Mustafa), 2.2.1

(Qi), 2.2.3 (Prateek), 2.2.4

(Hella), 2.2.7 (Udit), 2.3.2, 2.5.2

3

Introduction & Motivation

So far we have seen data repair

algorithms:

  assume that a given set of

constraints is correct

  search for least cost repairs

satisfying the constraints

  typically use heuristics, sampling

and statistical inference to reduce

the space of possible solutions

 e.g. papers 2.1.2 (Mustafa), 2.2.1

(Qi), 2.2.3 (Prateek), 2.2.4

(Hella), 2.2.7 (Udit), 2.3.2, 2.5.2

4

We have NOT looked at

constraint repair algorithms:

  aim to identify stale constraints

 and modify the data/constraints

 e.g. papers 2.4.1, 2.4.2

Introduction & Motivation

So far we have seen data repair

algorithms:

  assume that a given set of

constraints is correct

  search for least cost repairs

satisfying the constraints

  typically use heuristics, sampling

and statistical inference to reduce

the space of possible solutions

 e.g. papers 2.1.2 (Mustafa), 2.2.1

(Qi), 2.2.3 (Prateek), 2.2.4

(Hella), 2.2.7 (Udit), 2.3.2, 2.5.2

5

We have NOT looked at

constraint repair algorithms:

  aim to identify stale constraints

 and make modifications

 e.g. papers 2.4.1, 2.4.2

We have NOT looked at data

cleaning systems:

  consider static data (snapshot)

 and fixed constraints

 e.g. papers 2.6.1 (AJAX), 2.6.2

(Potter’s Wheel), 2.6.3

(NADEEF), 2.6.4 (LLUNATIC),

2.6.5 (Data Tamer)

Introduction & Motivation

• Need a new system for cleaning the data and the

constraints in dynamic environments

• Do incremental cleaning

• Involve the users (domain experts)

6

Main Contributions

A cleaning framework that enables continuous data cleaning

where both the data and constraints change.

  A logistic classifier to predict the type of repair needed

 (data, constraint, or both)

  Input features for the classifier: 22 statistics over the data

 and constraints to capture the changing dynamics. Can be

 updated incrementally

  Labels: repairs suggested by the user

7

Architecture

8

Architecture

9

The Classifier

10

Classifier

Dirty

Database

Set of

constraints

(FDs)

One of:
1) Not repaired

2) Repaired completely by FD

repairs

3) Repaired completely by Data

repairs

4) Repaired completely by Data and

FD repairs

5) Repaired partially by FD repairs

6) Repaired partially by data repairs

7) Repaired partially by FD and

data repairs

(a) Classifier Training

For a given database I, a set of FDs F and a set of repairs R:

1. Create the set P of all patterns that violate one or more FDs

2. For each pattern p in P, compute a 22 x 1 feature vector

G(p) via 22 statistics

3. Training set = {(G(p), class(R(p))) for all p in P }

11

(a) Classifier Training: Computing the

Feature Vectors (incrementally)

Compute 22 statistics for pattern p that violates FD F (X → A):

• Proportion of violating tuples in F

• Proportion of tuples that match p

• Mean({ overlap(F’, p) } where F’ ≠ F)

• Min({ fix(p, F → Frepaired) } for all repairs of F)

• Frequency-based entropy stats of F-satisfying patterns of X:

12

(a) Classifier Training: Computing the

Feature Vectors (incrementally)

Compute 22 statistics for pattern p that violates FD F (X → A):

• Proportion of violating tuples in F

• Proportion of tuples that match p

• Mean({ overlap(F’, p) } where F’ ≠ F)

• Min({ fix(p, F → Frepaired) } for all repairs of F)

• Frequency-based entropy stats of F-satisfying patterns of X:

13

Architecture

14

Architecture

15

(b) Repair-Type Classifier

16

Weighted

Logistic

Regression

New

violating

pattern p’

For each pattern, one of:
1) Not repaired

2) Repaired completely by FD

repairs

3) Repaired completely by Data

repairs

4) Repaired completely by Data and

FD repairs

5) Repaired partially by FD repairs

6) Repaired partially by data repairs

7) Repaired partially by FD and

data repairs

Architecture

17

Architecture

18

Architecture

19

Use an

existing

algorithm by

Chiang and

Miller (2011)

(paper #

2.4.1)

(c) Repair search (paper # 2.4.1)

• A data repair algorithm that searches for data modifications

such that the constraints hold and repair cost is minimal

• A constraint repair algorithm that determines which

attributes to add to a constraint to resolve the inconsistency

• A new cost model that quantifies the trade-off of when an

inconsistency is a data error (needing a data repair) versus an

update to the model (justifying a constraint repair)

20

Architecture

21

Use an

existing

algorithm by

Chiang and

Miller (2011)

(paper #

2.4.1)

Evaluation

Four main ways of evaluation:

• Accuracy of classification

  around 11 to 15 % gain

• Utility of each of the 22 statistics

  Found 3 statistics to be more useful than others

• Comparison with existing cleaning solutions (precision of

repair, and running time)

  around 20% gain in precision, 13 to 19% in runtime

• Scalability with number of tuples

22

Summary

• A new data cleaning system that looks for data repairs AND

constraint repairs in a continuously changing environment

• Harness the dual power of machine learning and user

involvement to prune the search space of repairs

• Achieves better accuracy than existing techniques that only

handle static data and fixed constraints

• Is scalable for vertically-expanding data

23

Thoughts

• A nice well-rounded approach to data cleaning: combines machine

learning with user expertise to reduce the search space for existing

automatic data+constraint repair algorithms

• The numbers for accuracy suggest some room for improvement:

  try other repair algorithms (paper # 2.4.2, ICDE 2013)

  try other statistics as features

  try other classifiers (e.g. decision trees, SVMs)

• Need to test scalability with respect to the number of attributes

• Test the possibility of evolution into a generalized, extensible and easy-

to-deploy system like NADEEF

24

