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Introduction & Motivation 
_______________________________________________________________________________ 

So far we have seen data repair  

algorithms: 

   assume that a given set of 

constraints is correct 

   search for least cost repairs  

satisfying the constraints 

   typically use heuristics, sampling 

and statistical inference to reduce 

the space of possible solutions 

   e.g. papers 2.1.2 (Mustafa),  2.2.1 

(Qi),  2.2.3 (Prateek), 2.2.4 

(Hella),  2.2.7 (Udit), 2.3.2, 2.5.2 
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We have NOT looked at  

constraint repair algorithms: 

    aim to identify stale constraints   

        and modify the data/constraints 

    e.g. papers 2.4.1, 2.4.2 
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We have NOT looked at  

constraint repair algorithms: 

    aim to identify stale constraints   

        and make modifications  

    e.g. papers 2.4.1, 2.4.2 

 

We have NOT looked at data  

cleaning systems: 

    consider static data (snapshot)   

        and fixed constraints  

    e.g. papers 2.6.1 (AJAX), 2.6.2 

(Potter’s Wheel), 2.6.3 

(NADEEF), 2.6.4 (LLUNATIC), 

2.6.5 (Data Tamer) 

 



Introduction & Motivation 
_______________________________________________________________________________ 

• Need a new system for cleaning the data  and  the 

constraints in dynamic environments 
 

• Do incremental cleaning 
 

• Involve the users (domain experts) 
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Main Contributions 
_______________________________________________________________________________ 

A cleaning framework that enables continuous data cleaning 

where both the data and constraints change. 
 

      A logistic classifier to predict the type of repair needed  

          (data, constraint, or both) 
 

      Input features for the classifier: 22 statistics over the data  

          and constraints to capture the changing dynamics. Can be   

          updated incrementally 
 

      Labels: repairs suggested by the user 

7 



Architecture 
_______________________________________________________________________________ 
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Architecture 
_______________________________________________________________________________ 
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The Classifier 
_______________________________________________________________________________ 
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Classifier 

Dirty 

Database 

Set of 

constraints 

(FDs) 

One of: 
1) Not repaired 

2) Repaired completely by FD 

repairs 

3) Repaired completely by Data 

repairs 

4) Repaired completely by Data and 

FD repairs 

5) Repaired partially by FD repairs 

6) Repaired partially by data repairs 

7) Repaired partially by FD and 

data repairs 

 

 



(a) Classifier Training 
_______________________________________________________________________________ 

For a given database I, a set of FDs F and a set of repairs R: 

 

1. Create the set P of all patterns that violate one or more FDs 

2. For each pattern p in P, compute a 22 x 1 feature vector 

G(p) via 22 statistics 

3. Training set = {( G(p), class( R(p)) ) for all p in P } 
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(a) Classifier Training: Computing the 

Feature Vectors (incrementally) 
_______________________________________________________________________________ 

Compute 22 statistics for pattern p that violates FD F (X → A): 
 

• Proportion of violating tuples in F 

• Proportion of tuples that match p 

• Mean( { overlap(F’, p) } where F’ ≠ F ) 

• Min( { fix(p, F → Frepaired) } for all repairs of F ) 

• Frequency-based entropy stats of F-satisfying patterns of X: 
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Architecture 
_______________________________________________________________________________ 
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Architecture 
_______________________________________________________________________________ 
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(b) Repair-Type Classifier 
_______________________________________________________________________________ 
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Weighted 

Logistic 

Regression 

New 

violating 

pattern p’ 

For each pattern, one of: 
1) Not repaired 

2) Repaired completely by FD 

repairs 

3) Repaired completely by Data 

repairs 

4) Repaired completely by Data and 

FD repairs 

5) Repaired partially by FD repairs 

6) Repaired partially by data repairs 

7) Repaired partially by FD and 

data repairs 
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Use an 

existing 

algorithm by 

Chiang and 

Miller  (2011) 

(paper # 

2.4.1) 



(c) Repair search (paper # 2.4.1) 
_______________________________________________________________________________ 

• A data repair algorithm that searches for data modifications 

such that the constraints hold and repair cost is minimal 

 

• A constraint repair algorithm that determines which 

attributes to add to a constraint to resolve the inconsistency 

 

• A new cost model that quantifies the trade-off of when an 

inconsistency is a data error (needing a data repair) versus an 

update to the model (justifying a constraint repair) 
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Architecture 
_______________________________________________________________________________ 
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Evaluation 
_______________________________________________________________________________ 

Four main ways of evaluation: 
 

• Accuracy of classification 

               around 11 to 15 % gain  

• Utility of each of the 22 statistics 

               Found 3 statistics to be more useful than others 

• Comparison with existing cleaning solutions (precision of 

repair, and running time) 

               around 20% gain in precision, 13 to 19% in runtime 

• Scalability with number of tuples 
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Summary 
_______________________________________________________________________________ 

• A new data cleaning system that looks for data repairs AND 

constraint repairs in a continuously changing environment   
 

• Harness the dual power of machine learning and user 

involvement to prune the search space of repairs 
 

• Achieves better accuracy than existing techniques that only 

handle static data and fixed constraints 
 

• Is scalable for vertically-expanding data 
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Thoughts 
_______________________________________________________________________________ 

• A nice well-rounded approach to data cleaning: combines machine 

learning with user expertise to reduce the search space for existing 

automatic data+constraint repair algorithms  
 

• The numbers for accuracy suggest some room for improvement:  

   try other repair algorithms (paper # 2.4.2, ICDE 2013) 

       try other statistics as features 

       try other classifiers (e.g. decision trees, SVMs) 
 

• Need to test scalability with respect to the number of attributes 
 

• Test the possibility of evolution into a generalized, extensible and easy-

to-deploy system like NADEEF 
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