
Automatic Discovery of Functional Dependencies and Conditional Functional
Dependencies: A Comparative Study

Nabiha Asghar, Amira Ghenai
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

{nasghar,aghenai}@uwaterloo.ca

1 Introduction

Over the last twenty years, several algorithms have been
proposed for automatic rule/constraint discovery from data,
for the purpose of data cleaning. These algorithms look for
constraints such as functional dependencies (FDs), condi-
tional FDs (CFDs), inclusion dependencies (INDs), con-
ditional INDs (CINDs), association rules, integrity con-
straints (ICs) and denial constraints (DCs), among others.
While some of these techniques are direct generalizations
and extensions of others, many differ greatly from the rest
in approach, characteristics and general flavour. Many of
these algorithms have not been tested and compared against
each other, therefore their core differences and relative
strengths and weaknesses are hard to comprehend.

Broadly speaking, the first goal of this project is to anal-
yse this body of constraint-discovery algorithms and build a
taxonomy of sorts, which classifies these algorithms based
on their similarities and differences, and tests their relative
strengths and weaknesses using common test datasets. For
now, we limit the scope of this project to the following al-
gorithms for discovery of FDs and CFDs. In particular, we
consider the following seven algorithms: FUN [1], Fdep
[2] FASTFD [3], Dep-Miner [4], TANE [5], CTANE [6]
and CTANE-2 [7].

The second goal is to find/create datasets that can test
these algorithms with different parameters and edge cases
to highlight their core characteristics, strengths and weak-
nesses, as well as analyse their performance and accuracy
relative to each other. We look for expected as well as
anomalous behaviour by these algorithms in this experi-
mental study, that can shed some light on potential algorith-
mic improvements or point us in the direction of creating
hybrid techniques in future.

2 Preliminaries

In this section, we briefly review the definitions of FDs and
CFDs with examples.

ID Name Bday Wage Supvsr
(I) (N) (B) (W) (S)

t1 e1 Bob d1 1 e5
t2 e2 John d1 1 e1
t3 e3 John d1 2 e1
t4 e4 Peter d3 2 e2

Table 1: An Example Instance

2.1 Functional Dependencies

Consider a relational schema R with attributes attr(R).

A functional dependency (FD) ϕ, defined as X → Y ,
means that X functionally determines Y where X,Y ⊆
attr(R). The FD ϕ is satisfied by a database instance r on
R if, for any two tuples t1, t2 ∈ r, t1[X] = t2[X] implies
t1[Y] = t2[Y]. In this case, we say that r satisfies ϕ, de-
noted by r |= ϕ. X is called the left-hand side (LHS) or
the determinant and Y is called the right-hand side (RHS)
or the dependent. [8]

In other words, if there exist two tuples t1 and t2 in an
instance r that have the same value for attributes X and
different values for attribute Y , then there must be some
errors present in t1 or t2. This is one of the main reasons
why FDs are extensively used for data cleaning, as we will
see in detail later.

An FD ϕ is minimal if removing an attribute from its LHS
makes it invalid. Additionally, an FD is said to be triv-
ial if the RHS is a subset of the LHS. It can be shown
through Armstrong’s rules that multiple attributes in the
RHS of FDs can be decomposed into multiples FDs with
one attribute on the RHS [8]. Therefore, in this report, we
are only interested on FDs with one attribute on the RHS.
Thus, given a database instance r of schema R, the FD dis-
covery problem is to find all valid, minimal and nontrivial
FDs with one attribute in the RHS that hold on r.

Example 1. Consider Table 1. We see that Name uniquely
determines the attributes Birthday and Supervisor. There-
fore two possible FDs in this table areN → B andN → S,
because we cannot find a pair of tuples ti and tj such that
ti[N] = tj [N]∧ ti[B] 6= tj [B]. In contrast, the FD B → S

Figure 1: FD and CFD Discovery: Schema Driven vs. In-
stance Driven Algorithms

is violated by t1 and t2 because t1[B] = t2[B] = d1, but
t1[S] 6= t2[S].

2.2 Conditional Functional Dependencies

A conditional functional dependency (CFD) φ over a re-
lation schema R is a pair (X → Y, tp) where X,Y ⊆
attr(R). X → Y is a standard FD, referred to as the FD
embedded in φ, and tp is a pattern tuple with attributes in
X and Y , where for each B ∈ X ∪ Y , tp[B] is either a
constant in domain(B) or an unnamed variable ‘−′ that
draws values from domain(B), and is called a wildcard.
We separate theX and Y attributes in tp with ‘ || ′. Clearly,
standard FDs are a special case of CFDs, because an FD
X → Y can be expressed as a CFD (X → Y, tp) where
tp[B] = − for allB ∈ X ∪Y . The notion of nontrivial and
minimal CFDs carries over from the corresponding notion
for FDs.

Example 2. Consider Table 1 again. Here, φ1 = (N →
B, (John || d1)) and φ2 = (B → W, (d1 || −)) are both
CFDs. We say that support(φ1) = 2 and support(φ2) =
3, because a total of 2 and 3 tuples satisfy CFDs φ1 and φ2
respectively.

3 Literature Review: FD and CFD
Discovery Algorithms

In this section, we present a brief overview and the core
insights for each rule discovery algorithm considered in this
study.

FD and CFD discovery approaches can be divided into
schema-driven and instance-driven approaches. In this
work, we present different techniques from both cate-
gories: TANE [5], FUN [1], CTANE [6] and CTANE-2
[7] as examples of schema-driven techniques and Fdep [2],
FASTFD [3] and Dep-Miner [4] as examples for instance-
driven technique. We will see in results later that FUN,
TANE, CTANE and CTANE-2 are sensitive to the size of
the schema, while FASTFD, Fdep and Dep-Miner are sen-
sitive to the size of the instance.

3.1 Schema-Driven Algorithms

3.1.1 FUN

FUN [1] is an example of a schema-driven algorithm that
uses a level-wise approach to explore the attribute set lattice
of an input relation, where at each level k of the lattice,
the possible candidates are the free sets. The introduced
concept of free sets is defined as follows:

Definition 1 Free Set
Let X ⊆ R be a set of attributes and r be an instance over
a relation R. X is a free set in r if and only if @X ′ ⊂
X, |X ′r| = |Xr| where |X ′r| stands for the cardinality of
the projection of r over X .

To compute the FDs supported by the instance r of relation
R, two more concepts are needed: attribute closure X+

and quasi-attribute closure X♦. The closure of set X is
calculated as follows:

X+ = X+ {A | A ∈ (R−X)∧ |R[X]| = |r[XA]|} (1)

This essentially means that X+ contains attribute A on a
node at the next level if X → A. Second, the quasi-closure
of X is X♦ = X + (X −A1)+ + ...+ (X −Ak)+, where
X = A1...Ak. In fact, X♦ contains the attributes on all
the parent nodes of X and all the dependent nodes of the
parent nodes. Both values are computed given a set of free
set and a level in the lattice, and those values are computed
because the FDs are constructed using members of Fr(r)
and the two closures:

FD = {X → A | X ∈ Fr(r) ∧A ∈ (X+ −X♦)} (2)

The method used by FUN algorithm to prune the free-sets
Fr(r) is to prune non-free-sets X . Later, the algorithm
computes the closure of the parent free-set nodes Y of X
with the cardinality of the free sets and without accessing
the partitions [8].

Algorithm 1 shows how FUN uses attribute lattice traver-
sal level-wise technique to compute FDs. For example, at
level 1, the algorithm computes the cardinality of all single
attributes and the quasi-closure is set to itself. At level 2,
we combine two attributes and recalculate the correspond-
ing 2-attribute cardinality at level 1. If the cardinality of a
2-attribute combination X is the same as the cardinality of
its parent P at the previous level, and X is a non-free set
and does not participate in future node generation, then we
compute the closure of every attribute set P at the previous
level. Next, the quasi-closure of every attribute setX at the
current level is calculated. Then, the algorithm moves to
node generation at level 3.

3.1.2 TANE

TANE [5] is a schema-driven algorithm that automatically
discovers exact and approximate FDs in a given dataset,
through an exhaustive breadth-first search technique on a

Algorithm 1 FUN
Require: Relation Instance r, Relation R
Ensure: All non-trivial, minimal FDs Σ

1: L1 ← {{A} | A ∈ R}
2: l← 1
3: while Ll 6= 0/ do
4: ComputeClosure(Ll−1, Ll)
5: ComputeQuasiClosure(Ll, Ll−1)
6: DisplayFD(Ll−1)
7: PurePrune(Ll, Ll−1)
8: Ll ← Ll + 1
9: end while

lattice of database attributes, by employing new and effi-
cient pruning methods to trim the search space. The at-
tribute lattice (see Figure 2) is a levelwise structure that
contains all the singleton sets of attributes on the first level,
all the sets of pairs of attributes on the second level, all the
triples on the third level, and so on. An attribute-set X at
level i is linked to the attribute-set Y at level (i + 1) if
and only if X ⊂ Y ; in particular, Y contains exactly one
attribute not in X .

TANE starts its search for minimal, nontrivial FDs at the
first level of the lattice, and works its way up the levels
one by one to larger attribute sets. At its core, for each
set X at level i, the algorithm checks whether the FDs
X\{A} → A, where A ∈ X , hold on the data or not. This
guarantees that only nontrivial FDs are considered. In ad-
dition, to ensure that only minimal FDs are checked, TANE
keeps track of the possible RHS candidates C+(X) for each
X . Efficiently checking whether an FD holds on the data
is one of the most important and crucial contributions by
TANE. This is done by dividing the data tuples into equiv-
alence classes with respect to any attribute-set X . Thus,
a partition πX , containing the equivalence classes with re-
spect to X , of the data tuples is created for every attribute-
set X . This gives a nice characterization of when an FD
holds: An FD X\{A} → A holds if and only if the number
of equivalence classes with respect to X\{A} is equal to
the number of equivalence classes with respect to X . Once
all the items at level i are checked, TANE moves on to level
i+ 1.

Ordinarily, checking every item at every level of the lattice
is an exponential process. However, the main insight re-
garding TANE is that this levelwise, small-to-large search
strategy proceeds in a very systematic and pre-determined
way, which provides two benefits.

1. It allows information from previous levels to be used
in the next levels. For example, the partitions of the
data tuple do not need to be created from scratch for
every subset of the attributes. TANE computes only
the partitions of singleton attributes directly from the
database. Partitions πX for |X| ≥ 2 are computed as
a product of partitions with respect to any rwo differ-
ent subsets of X of size |X| − 1; this is conveniently

Figure 2: Attribute Search Lattice

done because only partitions from the previous levels
are needed. Another example of information propaga-
tion and re-use across levels is that TANE efficiently
keeps track of the sets C+(X) for each setX , by com-
puting C+(X) as the intersection of C+(X\{A}) for
all A ∈ X , which have already been computed in pre-
vious steps.

2. Once an FD X\{A} → A is known to hold on the
data, all the supersets of X\{A} are removed from all
the higher levels of the lattice. In addition, A and all
B ∈ R\X are removed from C+(X) (because they
would only give rise to redundant FDs). These prun-
ing tricks substantially trim the otherwise exponen-
tially large search space of the attribute sets and the
RHS candidates for each attribute set.

A high-level pseudocde for TANE is shown in Algorithm
2.

Algorithm 2 TANE
Require: Relation r over schema R
Ensure: All non-trivial minimal FDs

1: L0 ← {∅}
2: L1 ← {{A} | A ∈ R}
3: C+{∅} ← R
4: l← 1
5: while Ll 6= ∅ do
6: ComputeDependencies(Ll)
7: Prune(Ll)
8: DisplayFDs(Ll)
9: Ll+1 ← GenerateNextLevel(Ll)

10: l← l + 1
11: end while

3.1.3 CTANE

The CTANE [6] algorithm, published almost 10 years after
TANE, is a straightforward extension of TANE, and auto-
matically discovers variable and constant CFDs in the data.
The idea is to leverage the advantages of TANE’s levelwise

search strategy and pruning techniques and extend them to
accomodate CFDs (which are a generalization of FDs).

Since a CFD is a combination of an FD and a pattern tuple
for that FD, the elements of the search lattice for CTANE
are now of the form (X, tp), where X is an attribute set
and tp is a pattern tuple over X that may contain constants
or unnamed variables ‘−’ to signify wildcard values. The
first level contains elements of the form (A,α) where A
is a singleton attribute and α ∈ domain(A) ∪ {−}. An
element (X, tp) at level i is linked to the element (Y, sp) at
level (i + 1) if X ⊂ Y , Y contains exactly one attribute
not in X , and sp agrees with tp on the X attributes. For
each element (X, tp) at level i, CTANE checks whether the
CFDs X\{A} → A, (tp[X\{A}] || tp[A]), where A ∈ X ,
hold on the data or not. As before, the set C+(X, tp) is also
maintained for every (X, tp) to ensure that the considered
CFDs are minimal.

As before, the idea of partitions and equivalence classes
is used to efficiently check whether a CFD holds or not.
More concretely, a CFD X\{A} → A, (tp[X\{A}] || cA)
holds if and only if the number of equivalence classes with
respect to the element (X\{A}, tp[X\{A}]) is equal to the
number of equivalence classes with respect to the element
(X, tp). The idea of information propagation and re-use
across levels is carried forward from TANE to CTANE, as
expected. The partitions for elements at higher levels of
the lattice can be easily computed from smaller already-
computed partitions. Similarly, the set C+(X, tp) for any
(X, tp) can be computed as the intersection of the already-
computed sets C+(X\{B}, tp[X\{B}]), where B ∈ X .

Finally, the lattice-pruning strategies are similar to those in
TANE. Once a CFD X\{A} → A, (tp[X\{A}] || cA) is
found to be true for the data, the set C+(X, tp) is pruned
and the element (X, tp) and its supersets are removed from
the lattice.

CTANE allows k-frequent CFDs to be mined from the
data, where k is a user-defined parameter called the support
threshold. The insight here is that 1-frequent CFDs may
not be useful in practice, because they capture erroneous
and dirty tuples as well. Thus, it is more useful to mine
for CFDs satisfied by at least k tuples. This also helps with
pruning the search space considerably, because the num-
ber of CFDs that hold with a high support is significantly
smaller. Choosing the right value of k is an NP- hard prob-
lem and it represents a trade-off between efficiency and
completeness of results. Varying the value of k allows us to
analyze the run-time and memory performance of CTANE
on different datasets, as we demonstate in the experiments
later.

CTANE’s pseudocode is exactly the same as the TANE
pseudocode, shown in Algorithm 2, except that the first
level L1 and C+{∅} are initialized as L1 = {(A,−) | A ∈
attr(R)} ∪ {(A, a1) | a1 ∈ πA(r), A ∈ attr(R)} and
C+{∅} = L1.

3.1.4 CTANE-2

CTANE-2 [7] is another lattice-based, schema-driven algo-
rithm for automatic CFD discovery, which was published
around the same time as CTANE. Though the authors do
not give this algorithm any name, we name it CTANE-2
due to its similarity with TANE and CTANE. The goal of
CTANE-2 is the same as CTANE’s: discovering minimal,
nontrivial CFDs from the data that satisfy a minimum sup-
port threshold k. CTANE-2 allows the threshold to be of
types other than support; conviction, confidence, interest
and χ2-Test are some of the options mentioned in the pa-
per. This flexibility is missing in CTANE.

The underlying insight of CTANE-2 is remarkably similar
to CTANE (and TANE). The attribute lattice used here is
of the type used in TANE and shown in Figure 2. It is tra-
versed in a levelwise, breadth-first manner, where the sin-
gleton attributes and edges at level 1 are considered first,
followed by all the attribute pairs and edges at level 2, and
so on. Based on an edge in the lattice between sets X (at
level i) and Y = X∪A (at level i+1), CTANE-2 checks all
the CFDs [Q,P] → A, where X = P ∪Q, P is the set of
variable attributes and Q is a set of conditional attributes.
For example, in Figure 2, for edge (X,Y) = (AC,ABC),
CTANE-2 checks the following CFDs: (Q = A,P = C →
B), (Q = C,P = A→ B), (Q = A,C, P = φ→ B) and
(Q = φ, P = A,C → B), where Q if non-empty, takes on
all possible values of the attribute set it equals. For exam-
ple, in the first candidate CFD, Q takes on all the values of
A occuring in the database. Note that the fourth candidate
CFD is essentially an FD, and the third candidate CFD has
a constant left-hand-side.

CTANE-2’s method of checking whether a CFD holds on
the data is also based on equivalence classes and partitions
of attribute sets, but the actual validity test is slightly dif-
ferent from that in TANE and CTANE. Here, the notion
of subsumed classes is used. Concretely, for attribute sets
X and Y , an equivalence class xi in πX is subsumed by
an equivalence class yi in πY if xi ⊆ yi. The symbol
ΩX ⊆ πX is used to denote the set of all the subsumed
classes in πX . The set ΩX is an important tool, which is
also used to ensure minimality of CFDs; this is explained
later. The validity test, then, is as follows: The candidate
[Q,P] → A is a valid CFD if and only if there exists
an equivalence class qi in the partition πQ, such that qi
contains values only from ΩP∪Q. Intuitively, this means
that the CFD validity test is based on identifying values in
X = P ∪ Q that map to the same Y = P ∪ Q ∪ A value.
In other words, we are interested in the equivalence classes
of X that do not split into two or more classes in Y . This
is just a different way of phrasing CTANE’s CFD validity
test and the notion of refinement of classes.

Note that the candidate dependencies considered by
CTANE-2 are never trivial, because the edges of the lat-
tice never correspond to trivial dependencies. The pruning
strategies employed by CTANE-2 are also similar to what

we have seen before. For candidates of the form X → A
that hold as FDs, all supersets of X are removed from
the lattice. For candidates of the form [Q,P] → A that
hold as CFDs, all the classes xi ∈ ΩX are pruned from
being considered in subsequent evaluations of this CFD
where the conditions are supersets of Q. This also ensures
the minimality of the discovered rules and is congruent to
the idea of maintaining sets of the form C+(X) in TANE
and CTANE. Finally, increasing the support threshold k
(or the confidence/conviction/interest threshold) also helps
trim the search space by quickly pruning unlikely candi-
dates at an early stage of traversal.

A high-level pseudocode for CTANE-2 is shown in Algo-
rithm 3.

Algorithm 3 CTANE-2
Require: Relation r over schema R, current level k
Ensure: All non-trivial minimal CFDs

1: Initialize CandidateCFDList CL = {}, GlobalCandi-
dateList G = {}

2: for X ∈ level k do
3: consider marked edge (X,Y)
4: if |πX | = |πY | then
5: (X,Y) is an FD. Unmark edge (X,Y).
6: Remove supersets of (X,Y) from G.
7: else
8: OX = subsumed classes of X , VX=(X−OX)
9: (OX , CL) = FindCFDs(OX , X, Y, k)

10: if OX 6= ∅ then
11: G(X ′, Y ′, Q, P) = (VX , OX).
12: end if
13: end if
14: if G = ∅ then
15: break, since no candidates remaining
16: end if
17: end for
18: return CL

3.2 Instance Driven Algorithms

3.2.1 Dep-Miner

Dep-Miner [4] is an example of an instance-driven FD dis-
covery technique that first computes the agree sets of tuples
using stripped partitioning technique. Later, a levelwise al-
gorithm is used for computing the LHS (minimal set cover)
of the minimal non-trivial functional dependencies.

Let R be a relation schema and r an instance of R. For two
tuples t1, t2 ∈ r, the agree set of t1 and t2 is defined as:

A(t1, t2) = {B ∈ R | t1[B] = t2[B].} (3)

The agree sets of instance r are:

<r = {A(t1, t2) | t1, t1 ∈ r, t1 6= t2.} (4)

Then, a maximal set is an attribute set X which, for some
attribute A, is the largest possible set not determining A.

We denote by max(dep(r), A) the set of maximal sets for
A w.r.t. dep(r):

max(dep(r), A) = {X ⊆ R | r 6|= X → A,∀Y ⊆ R,X → Y, r |= Y → A}
(5)

MAX(dep(r)) = ∪A∈Rmax(dep(r), A) (6)

To compute the FDs fromMAX(dep(r)), Dep-Miner uses
the notion of hypergraph. A collectionH of subsets ofR is
a simple hypergraph if ∀X ∈ H,X 6= 0, and (X,Y ∈ H
and X ⊆ Y ⇒ X = Y). Minimal transversals of simple
hypergraph are related to LHS of functional dependencies.
Algorithm 4 shows a general overview of Dep-Miner.

Algorithm 4 Dep-Miner
Require: Relation Instance r, Relation R
Ensure: All non-trivial minimal FDs Σ

1: for all A in R do
2: calculate <A

r

3: calculate CMAX-SET
4: end for
5: Find LHS from CMAX-SET using levelwise technique
6: Every output X→ A is ∈ Σ

3.2.2 FASTFD

FASTFD [3] is an instance-based FD discovery algorithm
that starts by computing the difference set of tuples, and
then adopts a depth-first search technique to find minimal
covers for the difference sets.

Let R be a relation schema and r an instance of R. For two
tuples, t1, t2 ∈ r, the difference set of t1 and t2 is defined
as:

D(t1, t2) = {A ∈ R | t1[A] 6= t2[A].} (7)

The difference sets of instance r are:

Dr = {D(t1, t2) | t1, t2 ∈ r,D(t1, t2) 6= ∅.} (8)

Given attribute A ∈ R, the difference sets of r modulo A
are:

DA
r = {D − {A} | D ∈ Dr and A ∈ D.} (9)

An FD ϕ : X → A is a minimal functional dependency
over r if and only if X is a minimal cover of DA

r (r). In
other words, ϕ is a valid FD if and only if X covers DA

r

i.e. X intersects with every element in DA
r . Therefore,

instead of computing FDs, the problem is now transformed
into finding all minimal set covers ofDA

r for every attribute
A ∈ R. Algorithm 5 shows how to compute FDs from
DA

r (r).

3.2.3 Fdep

Fdep [2] is an instance-based FD discovery algorithm that
is categorized under the dependency induction algorithms.
Fdep introduces the concept of dependency discovery as
an induction task where the tuples in a relation represent

Algorithm 5 FASTFD
Require: Relation Instance r, Relation R
Ensure: All non-trivial, minimal FDs Σ

1: for all A ∈ R do
2: calculate DA

r (r)
3: end for
4: for all A ∈ R do
5: Find minimal set cover of DA

r (r) using depth-first
search

6: Every output X → A is ∈ Σ
7: end for

instances of that relation, and dependencies represent hy-
potheses about the relation. Induction algorithms can be
classified as bottom-up, top-down or bi-directional. [2]
showed that bottom-up search method within this frame-
work is superior. Therefore, we are going to give a brief
overview of this type only as this is the technique used in
the experimental section.

Fdep relies on the concept of negative cover, which is a
cover of all FDs violated by the relation. Negative cover is
calculated using agree-sets of tuples of the relation (agree-
set concept has been defined previously). Agree sets can be
calculated using partitions, like TANE and Dep-Miner.

The main idea behind using agree sets is that if ag(t1, t2),
then A ∈ (R − X)(t1[A] 6= t2[A]), which means the FD
X → A is violated. This is the main idea behind using the
negative cover for discovering functional dependencies.

The next concept used is the max-set of attribute A, which
denotes the maximum list of agree-sets that do not include
the attribute A. The max-set of all attributes is called the
negative closure and it represents all FDs violated by a re-
lation.

The max-sets are then used to derive FDs supported by in-
stance r. The FDs with the RHS of A, denoted by FD(A),
are formulated in two steps: [8]

FD1(A) = {X → A | X ∈ (R−A)∧∃Y ∈ max(A)(X ⊆ Y)}
(10)

FD(A) = {f | f ∈ FD1(A)∧@g ∈ FD1(A)(lhs(g) ∈ lhs(f))}
(11)

The first step says that for any Y ∈ max(A), the FD
Y → A is violated if there is a tuple V such that Y V is
not max(A), then the FD Y V → A is satisfied. As a re-
sult, X → A as A is not a subset of Y . The second step
says that FD(A) has only minimal FDs.

4 Source Code, Datasets and
Implementation Details

The Java source code for the five FD algorithms (TANE,
FUN, FASTFD, Fdep and Dep-Miner) was obtained from
the Metanome Project1. The source code for CTANE and

1https://hpi.de/cn/naumann/projects/data-profiling-and-
analytics/metanome-data-profiling.html.

CTANE-2, on the other hand, is not available publicly.
Upon contacting the authors of CTANE, we were told that
its source code is proprietary knowledge owned by Bell
Labs and cannot be shared. Implementing CTANE proved
to be an arduous and time-consuming task, because the pa-
per does not mention all the algorithmic details needed for a
reader to implement them on his/her own. Significant time
was spent understanding, debugging and testing2 our code
in Python. We also set out to implement CTANE-2 our-
selves, but its papers mentions minimal details about how
the candidate lists are initialized and maintained. They also
fail to mention how the subsumed sets are built and updated
efficiently, and how the CFD validity check is efficiently
implemented. We did not have time to experiment with
these ourselves so, in the interest of time, we contacted the
authors and acquired a copy of the source code for CTANE-
2, implemented in Perl. Ideally, all implementations should
have been in the same language, so that run-times could be
compared. Nevertheless, most of the CFD-related experi-
ments presented here give results that can be interpreted in
a language-independent manner.

We used thirteen standard datasets for our experiments, all
available for free download at the UCI Machine Learning
Repository3 unless stated otherwise:

1. Iris, containing 5 attributes and 150 tuples (|R| = 5
and |r| = 150).

2. Balance-scale (|R| = 5 and |r| = 650).
3. Chess (|R| = 7 and |r| = 28056).
4. Abalone (|R| = 9 and |r| = 4177).
5. Nursery (|R| = 9 and |r| = 12960).
6. Breast Cancer Wisconsin (|R| = 11 and |r| = 699).
7. Bridges (|R| = 13 and |r| = 108).
8. Echocardiogram (|R| = 13 and |r| = 132).
9. Adult (|R| = 14 and |r| = 48842).

10. Letter (|R| = 16 and |r| = 32561).
11. Ncvoter4 (|R| = 19 and |r| = 1000).
12. Automobile (|R| = 26 and |r| = 205).
13. Horse (|R| = 27 and |r| = 368).

All the experiments were done on an Intel Core i5 CPU
with 4 cores (1.6 GHz each) and 8 GB RAM.

5 Experiments with FD Discovery
Algorithms

Table 2 shows the performance of FastFD, TANE, FUN,
Dep-Miner and Fdep on all the thirteen datasets. It is im-
portant to mention here that the version of TANE used for
this experiment is TANE/MEM, which works completely
in the main memory and there is no disk usage.

2We actually had to go back and implement TANE in Python
ourselves in order to understand exactly how it works, so that we
could in turn figure out how CTANE works!

3http://archive.ics.uci.edu/ml/
4available at ftp://alt.ncsbe.gov.gov/data/

Name |R| |r| |F| FASTFD TANE Dep-Miner Fdep FUN
iris 5 150 4 0.15 0.53 0.21 0.25 0.15
balance-scale 5 625 1 0.63 0.29 0.21 0.11 0.22
chess 7 28056 1 28.06 1.22 132.21 98.30 0.84
abalone 9 4177 137 4.18 0.63 1.89 3.03 0.29
nursery 9 12960 1 12.96 1.72 92.55 33.53 1.26
breast-cancer 11 699 46 0.70 0.95 0.68 0.21 0.35
bridges 13 108 142 0.11 0.66 0.26 0.11 0.44
echocardiogram 13 132 538 0.13 0.52 0.21 0.09 0.14
adult 14 48842 78 48.84 • 2948.31 432.47 •
letter 16 32561 61 32.56 • 686.94 181.45 •
ncvoter 19 1000 758 1.00 3.07 7.36 0.72 3.86
automobile 26 205 4176 0.21 • 11713.52 0.33 7926.68
horse 27 368 128726 0.37 • ◦ 7.65 •

Table 2: Run-time Results on 13 Datasets. [◦] indicates that Dep-Miner took longer than 4 hours and was aborted. [•]
indicates that the program ran out of main memory.

Quantitative Analysis of Table 2: First, we consider the
running times of every algorithm in Table 2 separately and
analyze the performance of the algorithms as |r| and |R|
increase for different datasets:

• FASTFD tends to work well with datasets where the
number of tuples is relatively small, such as Bridges
and Echocardiogram. However, its performance de-
grades as the number of tuples becomes high; this is
obvious when running the algorithm on Chess, Let-
ter and Adult datasets, where the execution times are
the highest. This is mainly because higher number
of tuples increases the difference set computation in
FASTFD. From these results, we can conclude that
FASTFD is sensitive to the size of the instance, rather
than the size of the schema, because for datasets with
high |R| and low |r| (Automobile and Horse), the per-
formance was good. Indeed, FASTFD is an instance-
driven algorithm.

• TANE shows good performance where |R| is low.
However, as the number of attributes starts to grow,
TANE experiences serious difficulties due to exces-
sive memory consumption and runs out of memory.
For Adult, Letter, Automobile and Horse datasets,
TANE runs out of memory and cannot find the min-
imal FDs using only the main memory. This is be-
cause TANE adopts a level-wise candidate generation
and pruning strategy which is dependent on the num-
ber of attributes in the relation. To sum up, TANE is a
schema-driven algorithm because it is sensitive to the
size of the schema.

• Dep-Miner shows better performance with datasets
where |r| is low, e.g. Breast-cancer-Wisconsin and
Bridges. When the number of tuples is high, the
algorithm takes more time to compute the minimal
FDs. Examples of such relations are Chess, where
the number of tuples is very high, as well as Adult
and Automobile. Dep-Miner takes a longer time with
higher number of tuples due to the computation of the
agree sets. From these results, we can see that Dep-

Miner is an instance-driven algorithm . Section 5.2
gives a detailed comparison between the two discov-
ered instance-driven algorithms.

• Fdep has shown to be very efficient for datasets where
the number of tuples is less than 10000. However, as
the number of tuples increase, the performance of the
algorithm decreases and this is evident for relations
like Adult, Letter and Chess. This is mainly due to the
negative cover computation (agree-set) as the number
of tuples |r2| increase. Fdep is sensitive to the size of
the instance and for this reason it is an instance-driven
algorithm.

• FUN shows good performance for almost all the
datasets except for the ones where the number for
attributes is growing. In Adult, Letter and Horse
datasets, FUN fails to compute the minimal FDs as it
runs out of memory and the main reason behind that is
that FUN adopts an attribute lattice traversal technique
that is exponential in the number of attributes. As this
algorithm is sensitive to the size of the schema, it is
considered to be a schema-driven algorithm. Section
5.1 compares TANE and FUN in detail.

5.1 Schema Driven Algorithms (TANE vs. FUN)

We chose to compare two of the schema-driven algorithms
in terms of performance: TANE and FUN. We will mainly
compare them in terms of the wall clock time and the cor-
relation factor.

5.1.1 Wall Clock Time

This set of experiments involved experiments with TANE
and FUN on nine datasets. The results are shown in Figure
3.

Quantitative Analysis of Figure 3: Figure 3 shows that,
for most of the datasets, FUN had better performance than
TANE. The main reason for FUN’s higher efficiency is that
TANE suggests different pruning strategies which may be

Figure 3: Wall clock time of TANE and FUN algorithms on Nine Datasets

costly to compute. The gap between execution time of
TANE and FUN is caused, on one hand, by the source
set (C+) computation and, on the other hand, by the ex-
ploration of the search space, more reduced in FUN than
in TANE. In other words, TANE tends to discard irrele-
vant candidates, some of which capture non-minimal FDs,
whereas FUN examines all candidates but only captures
possible minimal FDs. Any candidate provided with a set
C+ different from R is a non free set. It is deleted by
FUN whereas TANE eliminates a candidate only if its as-
sociated C+ is empty. Thus the search space explored by
FUN is smaller than that of TANE. The new characteriza-
tion that we propose is simpler and sound. It is based on
three concepts. FUN eliminates the candidates of FD dis-
covery much faster, compared to TANE.

5.1.2 Correlation Factor

In this section, we present experimental results obtained
with randomly-generated integer relation instances and
with fixed attributes |R| = 10. We used a synthetic dataset
to control the rate of identical values by introducing the pa-
rameter correlation factor (CF), which controls the number
of identical values in a column of the table. For example,
if CF has a value of 50% for an attribute and the number
of tuples is 1000, then each value for this attribute is cho-
sen from 500 possible values. Tests were done on various
datasets, classified into three groups: datasets without con-
straints, datasets with CF = 50% and datasets with CF =
90%.

Quantitative Analysis of Table 3: The complexity of FUN
stems from the cost of computing free sets and the cost of
computing FDs. As CF increases, the length of the stripped
partitions in the free set computation also increases, as the

CF=0.0 CF=0.5 CF=0.9
|r| FUN TANE FUN TANE FUN TANE

50000 5.04 3.34 5.08 4.29 4.50 3.60
100000 12.97 5.30 13.77 6.89 6.89 4.13
150000 25.16 10.28 22.14 10.82 11.74 5.81
200000 36.11 12.65 34.31 14.20 14.99 8.43
250000 50.78 19.70 23.64 10.48 21.87 11.20
300000 64.63 22.93 28.57 12.62 26.43 15.19

Table 3: Execution times in seconds for correlated data
(|R| = 10)

cardinality computation becomes more complex. Thus, the
free set calculation becomes more time-consuming as the
CF progressively increases. This is the primary reason for
the difference between the execution times of FUN and
TANE.

5.2 Instance Driven Algorithms (FASTFD vs.
Dep-Miner)

We chose to compare two of the instance-driven algorithms
in terms of performance: FASTFD and Dep-Miner. Table
4 shows experiments run on the 13 UCI datasets.

Quantitative Analysis of Table 4: The performance of
FASTFD and DepMiner is very similar when the dataset
has a small number of attributes. The difference between
the wall clock time of the algorithms is more obvious when
the number of attributes gets large. For example, in the Au-
tomobile dataset with 26 attributes, the difference between
the wall clock time of the two algorithms is remarkable. In
datasets where the number of attributes is large, FastFD is
more efficient than Dep-Miner and the main reason relies

Name |R| |r| FastFD Dep Miner
iris 5 150 0.10 0.21
balance-scale 5 625 0.65 0.21
chess 7 28056 133.19 132.21
abalone 9 4177 2.19 1.89
nursery 9 12960 97.27 92.55
breast-cancer 11 699 0.69 0.68
bridges 13 108 0.26 0.26
echocardiogram 13 132 0.23 0.21
adult 14 48842 3165.40 2948.31
letter 16 32561 678.80 686.94
ncvoter 19 1000 1.42 7.36
automobile 26 205 2.72 11713.52
horse 27 368 338.81 ◦

Table 4: Execution times in seconds for 13 datasets. [◦]
indicates Dep-Miner took longer than 4 hours and was
aborted.

on the difference they both compute the minimal difference
cover. Dep-Miner uses lattice traversal method which is
exponential in the number of attributes and very expensive,
while FASTFD uses depth-first search technique to com-
pute the minimal set cover in order to output the minimal
FDs. Additionally, use of the lattice traversal method by
Dep-Miner makes the space usage/memory usage of this
algorithm worse than FASTFD; FASTFD is never in dan-
ger of running out of memory.

6 Experiments with CFD Discovery
Algorithms

We now explain our experiments with the CFD discovery
algorithms. Since we study only two CFD algorithms, both
of which are schema-driven, we present the results for each
dataset one by one. The experiments compare the running
time, memory usage and the size of output of the two algo-
rithms, and makes deductions about their inherent charac-
teristics based on the results.

6.1 Experiments with Iris Dataset

Figures 4, 5 and 6 show the results of the experiments done
on the Iris dataset using CTANE and CTANE-2. The results
for TANE are mentioned in the text.

Figure 4 shows the running time (wall-clock time) of
CTANE and CTANE-2 when the support threshold and
number of attributes are varied. For CTANE (Figure 4(a)),
the running time explodes exponentially for support = 10
when |R| is increased, but rapidly falls down to under 1
second at support =15. For CTANE-2 (Figure 4(b)), we
again see an exponential blowup in running time at support
= 10 for increasing values of |R|. However, the running
time decreases more slowly when the support is increased,
and goes down to around 1 minute when the support is 40.
Note here that for (a) and (b), the scale of y-axis is differ-
ent. This is because CTANE is implemented in Python and
CTANE-2 is implemented in Perl, and Python, in general,

is much slower than Perl. However, the trends still show an
exponential running time for both when the support is low
and the number of attributes is high. The key insights here
are the exponential blow up in running time when support
= 10, and the difference in the way the running time falls
when the support is increased. This is rapid for CTANE, but
gradual for CTANE-2. In contrast, TANE (not shown in the
Figure) always takes 0.36 seconds to complete, regardless
of the value of |R|.

Figure 5 shows how the RAM usage (more specifically
called the maximum resident set size) varies for CTANE
and CTANE-2 when the support threshold and the value
of |R| are varied. We see trends here that are similar to
the running time trends. The RAM usage blows up expo-
nentially when |R| is increased at support = 10, for both
algorithms. Furthermore, for both algorithms, it falls un-
der 200 MB at support = 15 for all values of |R|, and for
support ≥ 40, it falls under 100 MB. The key insights here
are the exponential blow up in memory usage at support =
10, and the fact that the y-axis scales are very different for
(a) and (b), which signifies that CTANE uses exponentially
more memory than CTANE-2 when support = 10. In con-
trast, TANE always uses 40 MB of RAM, regardless of the
value of |R|.

Finally, Figure 6 shows the number of CFDs output by the
two algorithms when the support and the number of at-
tributes are varied. Here, the two algorithms behave very
differently (note that the y-axis scales are the same for both
algorithms, so the results are directly comparable). At sup-
port = 10, the number of CFDs output by the two algo-
rithms is almost equal. However, for 10 < support < 60,
CTANE consistently outputs more CFDs than CTANE-2.
For support ≥ 60, the number of CFDs is equal for the two
algorithms for each value of |R|; this is because both al-
gorithms output FDs only, and these numbers are in fact
the same as those output by TANE. The key insights here
are the blowup in the number of CFDs output by both al-
gorithms at support ≤ 10, and the fact that CTANE consis-
tently outputs more CFDs than CTANE-2 for 10 < support
< 60.

Overall Interpretation: The explosion in running time
and memory usage at support = 10 is understandable for
both algorithms, because the number of CFDs at support =
10 increases exponentially when |R| is increased. CTANE
takes more time than CTANE-2 in general because Python
is slower than Perl. The two most interesting findings are
as follows.

1. CTANE uses exponentially more memory than
CTANE-2 when support = 10, even though the num-
ber of CFDs output at this support are almost equal.
We investigated the reasons for this by looking at the
intermediate results of the two algorithms, and discov-
ered that CTANE checks (and rejects) far more can-
didates than CTANE-2. This means that CTANE-2’s
pruning strategies are superior to CTANE’s.

2. CTANE outputs more CFDs than CTANE-2 for 10 <

support < 60. To understand this discrepancy, we
looked at the actual CFDs output by both the algo-
rithms. For example, for |R| = 5, the CFDs output by
CTANE and CTANE-2 are as follows.
CFDs output by CTANE for support = 10 and for sup-
port = 15:

1) A,B,C → E, (−,−,− || −)
2) A,B,C → E, (−,−,− || Iris-virginica)
3) A,B,C → E, (−,−,− || Iris-setosa)
4) A,B,C → E, (−,−,− || Iris-versicolor)
5) A,B,D → E, (−,−,− || −)
6) A,B,D → E, (−,−,− || Iris-virginica)
7) A,B,D → E, (−,−,− || Iris-setosa)
8) A,B,D → E, (−,−,− || Iris-versicolor)
9) A,C,D → E, (−,−,− || −)

10) A,C,D → E, (−,−,− || Iris-virginica)
11) A,C,D → E, (−,−,− || Iris-setosa)
12) A,C,D → E, (−,−,− || Iris-versicolor)
13) B,C,D → E, (−,−,− || −)
14) B,C,D → E, (−,−,− || Iris-virginica)
15) B,C,D → E, (−,−,− || Iris-setosa)
16) B,C,D → E, (−,−,− || Iris-versicolor)

CFDs output by CTANE-2 for support = 10:

1) A,B,C → E, (−,−,− || −)
2) A,B,D → E, (−,−,− || −)
3) A,C,D → E, (−,−,− || −)
4) B,C,D → E, (−,−,− || −)
5) D → E, (0.2 || −)
6) B,C,D → A, (2.8,−,− || −)
7) C → E, (1.5 || −)
8) D → E, (1.3 || −)
9) A,B,D → C, (−, 3.1,− || −)

10) A,C,D → B, (−,−, 1.8 || −)
11) B,C,D → A, (3.1,−,− || −)
12) C → E, (1.4 || −)
13) A,B,D → C, (−, 2.9,− || −)
14) A,B,E → C, (−, 2.9,− || −)

CFDs output by CTANE-2 for support = 15:

1) A,B,C → E, (−,−,− || −)
2) A,B,D → E, (−,−,− || −)
3) A,C,D → E, (−,−,− || −)
4) B,C,D → E, (−,−,− || −)
5) D → E, (0.2 || −)

We see that both algorithms detect some CFDs that
go undetected by the other. CTANE CFDs # 2, 3 and
4, for example, are simply special cases of CFD # 1
(which is an FD). Such special cases of FDs are never
output by CTANE-2, and this is why CTANE-2 is
more efficient in terms of run-tme as well as memory.
Furthermore, CTANE-2 focuses on detecting CFDs
whose right-hand-sides are wild-cards, and constants
only appear in the left-hand-sides. Overall, it looks
like CTANE-2’s output is much more useful than that
of CTANE.

6.2 Experiments with Balance-scale Dataset

Figures 7, 8 and 9 show the results of the experiments done
on the Balance-scale dataset, which has a slightly higher
number of tuples than Iris.

As before, CTANE’s running time shoots up exponentially
for support < 200 when we increase |R| from 5 to 11 (Fig-
ure 7). The same is not true for CTANE-2, who’s running
time increases exponentially when |R| is increased, but in
a way that is less dependent on the support. In other words,
CTANE-2 seems to have consistent efficiency across dif-
ferent values of support, and this is not true for CTANE.
Exactly the same trend is observed with the memory us-
age results (Figure 8). Finally, the number of CFDs out-
put by CTANE-2 are not affected by support either (al-
though they increase when |R| is increased, and this is ex-
pected). CTANE, on the other hand, outputs many more
CFDs and matches CTANE-2’s output only when support
≥ 300; these are infact all the FDs that are output by TANE
too (Figure 9). In light of the number of CFDs output by
these two algorithms, it makes sense that the running time
and memory usage by CTANE-2 remains more or less un-
affected by support, but that CTANE shows exponential in-
crease in running time and memory usage as support is de-
creased. Therefore, it is safe to say that the major factor
that makes these two algorithms behave differently is the
number and kind of CFDs they output. A deeper analysis
of the CFDs output by them again shows that the each algo-
rithm detects some CFDs that are missed by the other, but
that many of CTANE’s CFDs are special cases of FDs and
this causes the exponential blow up. This does not happen
with CTANE-2.

It is worth mentioning here that TANE’s running time and
memory usage always remains roughly constant at under 1
second and under 42 MB respectively.

6.3 Experiments with Abalone Dataset

To confirm our previous findings and insights about
CTANE and CTANE-2, we run similar experiments on one
more dataset: Abalone, which contains almost 6.5 times as
many tuples as the Balance-scale dataset. The results are
shown in Figures 10, 11 and 12.

The trends of running time, memory usage and number of
CFDs discovered are almost exactly the same as those seen
for the Balance-scale dataset. The only difference here is
that CTANE-2 shows exponential increase in running time
and memory usage behaviour around the support = 100
mark. The behaviour of CTANE is also exactly what we
expect by now, and as always, the number of CFDs output
by CTANE-2 is much lesser than those output by CTANE
for supprt < 1000.

These results confirm our hypothesis that CTANE outputs
many more CFDs than CTANE-2, many of which may not
be very useful. On the other hand, CTANE-2 mostly out-
puts CFDs that are NOT special cases of already found
FDs, and focuses on CFDs that have constants only on the
left-hand-side. CTANE-2’s pruning strategies also seem
superior than CTANE’s, which is evident in the memory
usage comparisons we have seen. For running time, even
though the results of the two algorithms are not directly

comparable (due to the fact that they are implemented in
different languages), we can still say that we see an expo-
nential increase in the run-time of CTANE when support or
|R| are increased. This is true for CTANE-2 as well, but its
exponent seems to be much lower than that of CTANE.

7 Conclusion and Future Work

We have presented an experimental and comparitive study
of seven algorithms for automatic discovery of FDs and
CFDs. Our experiments test these algorithms under dif-
ferent input parameters in order to identify their key char-
acteristics, their main algorithmic and performance-related
differences, relative strengths and relative weaknesses.

There is much to be done in future, in order to turn this
comparative study into a consolidated study of all the rule
and/or constraint discovery algorithms out there. First and
foremost, we intend to experiment wih more FD and CFD
discovery algorithms (e.g. FD Mine [9], DFD [10], CFD
tableaux generation [11], FASTCFD [6], CFDMiner [6]
and CORDS [12]) in order to make this study more com-
prehensive. Second, we plan to do more variable and ex-
tensive experiments, such as testing the effect of correla-
tion factor on CFD discovery algorithms, and the mem-
ory usage of FD discovery algorithms. Third, we intend
to include other types of constraint into this study, such as
denial constraints, inclusion dependencies and conditional
inclusion dependencies, and hope to extend this study by
experimenting with algorithms such as FASTDC [13], SPI-
DER [14] and BINDER [15]. Fourth, we intend to make
sure that all algorithms are implemented in the same lan-
guage, so that results are directly comparable. Fifth, we
intend to use servers with more powerful cores and bigger
RAM (at least 64 GB) so that we do not run out of memory
and we can run experiments with much bigger and realis-
tic datasets. Finally, we intend to include recent, realistic
and bigger datasets with tuples in millions, so that all these
algorithms can be stress-tested for efficiency and usability.

References

[1] N. Novelli and R. Cicchetti, “Fun: An efficient algo-
rithm for mining functional and embedded dependen-
cies,” in Database TheoryICDT 2001, pp. 189–203,
Springer, 2001.

[2] P. A. Flach and I. Savnik, “Database dependency dis-
covery: a machine learning approach,” AI communi-
cations, vol. 12, no. 3, pp. 139–160, 1999.

[3] C. Wyss, C. Giannella, and E. Robertson, “Fastfds:
A heuristic-driven, depth-first algorithm for mining
functional dependencies from relation instances ex-
tended abstract,” in Data Warehousing and Knowl-
edge Discovery, pp. 101–110, Springer, 2001.

[4] S. Lopes, J.-M. Petit, and L. Lakhal, “Efficient dis-
covery of functional dependencies and armstrong re-

lations,” in EDBT, vol. 1777, pp. 350–364, Springer,
2000.

[5] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivo-
nen, “Tane: An efficient algorithm for discovering
functional and approximate dependencies,” The com-
puter journal, vol. 42, no. 2, pp. 100–111, 1999.

[6] W. Fan, F. Geerts, J. Li, and M. Xiong, “Discov-
ering conditional functional dependencies,” Knowl-
edge and Data Engineering, IEEE Transactions on,
vol. 23, no. 5, pp. 683–698, 2011.

[7] F. Chiang and R. J. Miller, “Discovering data quality
rules,” Proceedings of the VLDB Endowment, vol. 1,
no. 1, pp. 1166–1177, 2008.

[8] J. Liu, F. Ye, J. Li, and J. Wang, “On discovery of
functional dependencies from data,” Data & Knowl-
edge Engineering, vol. 86, pp. 146–159, 2013.

[9] H. Yao, H. J. Hamilton, and C. J. Butz, “Fd mine:
discovering functional dependencies in a database
using equivalences,” in Data Mining, 2002. ICDM
2003. Proceedings. 2002 IEEE International Confer-
ence on, pp. 729–732, IEEE, 2002.

[10] Z. Abedjan, P. Schulze, and F. Naumann, “Dfd: Effi-
cient functional dependency discovery,” in Proceed-
ings of the 23rd ACM International Conference on
Conference on Information and Knowledge Manage-
ment, pp. 949–958, ACM, 2014.

[11] L. Golab, H. Karloff, F. Korn, D. Srivastava, and
B. Yu, “On generating near-optimal tableaux for con-
ditional functional dependencies,” Proceedings of the
VLDB Endowment, vol. 1, no. 1, pp. 376–390, 2008.

[12] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboul-
naga, “Cords: automatic discovery of correlations
and soft functional dependencies,” in Proceedings of
the 2004 ACM SIGMOD international conference on
Management of data, pp. 647–658, ACM, 2004.

[13] X. Chu, I. F. Ilyas, and P. Papotti, “Discovering denial
constraints,” Proceedings of the VLDB Endowment,
vol. 6, no. 13, pp. 1498–1509, 2013.

[14] J. Bauckmann, U. Leser, F. Naumann, and V. Ti-
etz, “Efficiently detecting inclusion dependencies,”
in Data Engineering, 2007. ICDE 2007. IEEE 23rd
International Conference on, pp. 1448–1450, IEEE,
2007.

[15] T. Papenbrock, S. Kruse, J.-A. Quiané-Ruiz, and
F. Naumann, “Divide & conquer-based inclusion de-
pendency discovery,” Proceedings of the VLDB En-
dowment, vol. 8, no. 7, pp. 774–785, 2015.

10 20 30 40
0

20

40

60

80

100

Support

R
un

-t
im

e
(m

in
ut

es
)

|R| = 5

|R| = 7

|R| = 9

|R| = 11

|R| = 12

|R| = 13

(a) CTANE

10 20 30 40
0

2

4

6

8

10

Support

R
un

-t
im

e
(m

in
ut

es
)

|R| = 5

|R| = 7

|R| = 9

|R| = 11

|R| = 12

|R| = 13

(b) CTANE-2

Figure 4: Run-time Experiments. Dataset: Iris. # of tuples = 150

10 20 30 40
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Support

M
ax

.
R

es
id

en
t

Se
t

Si
ze

(M
B

)

|R| = 5

|R| = 7

|R| = 9

|R| = 11

|R| = 12

|R| = 13

|R| = 14

(a) CTANE

10 20 30 40
0

50

100

150

200

250

300

350

400

Support

M
ax

.
R

es
id

en
t

Se
t

Si
ze

(M
B

)
|R| = 5

|R| = 7

|R| = 9

|R| = 11

|R| = 12

|R| = 13

|R| = 14

(b) CTANE-2

Figure 5: Memory Experiments. Dataset: Iris. # of tuples = 150

10 20 30 40 50 60
0

100

200

300

400

500

600

700

800

900

1,000

Support

#
of

C
FD

s

|R| = 5

|R| = 7

|R| = 9

|R| = 11

|R| = 12

|R| = 13

|R| = 14

(a) CTANE

10 20 30 40 50 60
0

100

200

300

400

500

600

700

800

900

1,000

Support

#
of

C
FD

s

|R| = 5

|R| = 7

|R| = 9

|R| = 11

|R| = 12

|R| = 13

|R| = 14

(b) CTANE-2

Figure 6: Experiments with # of CFDs. Dataset: Iris. # of tuples = 150

0 50 100 150 200 250 300
0

10

40

60

80

100

Support

R
un

-t
im

e
(m

in
ut

es
)

|R| = 5

|R| = 6

|R| = 7

|R| = 8

|R| = 9

|R| = 10

|R| = 11

(a) CTANE

0 50 100 150 200 250 300
0

2

4

6

8

Support

R
un

-t
im

e
(s

ec
on

ds
)

|R| = 5

|R| = 6

|R| = 7

|R| = 8

|R| = 9

|R| = 10

|R| = 11

(b) CTANE-2

Figure 7: Run-time Experiments. Dataset: Balance-Scale. # of tuples = 650

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

Support

M
ax

.
R

es
id

en
t

Se
t

Si
ze

(G
B

)

|R| = 5

|R| = 6

|R| = 7

|R| = 8

|R| = 9

|R| = 10

|R| = 11

(a) CTANE

0 50 100 150 200 250 300
0

10

20

30

40

50

Support

M
ax

.
R

es
id

en
t

Se
t

Si
ze

(M
B

)
|R| = 5

|R| = 6

|R| = 7

|R| = 8

|R| = 9

|R| = 10

|R| = 11

(b) CTANE-2

Figure 8: Memory Experiments. Dataset: Balance-Scale. # of tuples = 650

0 50 100 150 200 250 300
0

40

80

120

160

200

Support

#
of

C
FD

s

|R| = 5

|R| = 6

|R| = 7

|R| = 8

|R| = 9

|R| = 10

|R| = 11

(a) CTANE

0 50 100 150 200 250 300
0

20

40

60

Support

#
of

C
FD

s

|R| = 5

|R| = 6

|R| = 7

|R| = 8

|R| = 9

|R| = 10

|R| = 11

(b) CTANE-2

Figure 9: Experiments with # of CFDs. Dataset: Balance-Scale. # of tuples = 650

0 200 400 600 800 1,000

0

10

20

Support

R
un

-t
im

e
(m

in
ut

es
)

|R| = 5

|R| = 6

|R| = 7

|R| = 8

|R| = 9

|R| = 10

|R| = 11

(a) CTANE

0 200 400 600 800 1,000

0

0.5

1

1.5

2

2.5

3

Support

R
un

-t
im

e
(m

in
ut

es
)

|R| = 5

|R| = 6

|R| = 7

|R| = 8

|R| = 9

|R| = 10

|R| = 11

(b) CTANE-2

Figure 10: Run-time Experiments. Dataset: Abalone. # of tuples = 4177

0 200 400 600 800 1,000
0

1

2

3

4

5

6

Support

M
ax

.
R

es
id

en
t

Se
t

Si
ze

(G
B

)

|R| = 5

|R| = 6

|R| = 7

|R| = 8

|R| = 9

|R| = 10

|R| = 11

(a) CTANE

0 200 400 600 800 1,000
200

400

600

800

1,000

1,200

Support

M
ax

.
R

es
id

en
t

Se
t

Si
ze

(M
B

)
|R| = 5

|R| = 6

|R| = 7

|R| = 8

|R| = 9

|R| = 10

|R| = 11

(b) CTANE-2

Figure 11: Memory Experiments. Dataset: Abalone. # of tuples = 4177

0 200 400 600 800 1,000
0

100

200

300

400

500

600

Support

#
of

C
FD

s

|R| = 5

|R| = 6

|R| = 7

|R| = 8

|R| = 9

|R| = 10

|R| = 11

(a) CTANE

0 200 400 600 800 1,000
0

50

100

150

200

250

300

350

Support

#
of

C
FD

s

|R| = 5

|R| = 6

|R| = 7

|R| = 8

|R| = 9

|R| = 10

|R| = 11

(b) CTANE-2

Figure 12: Experiments with # of CFDs. Dataset: Abalone. # of tuples = 4177

