
Analysis of Authenticated Key Exchange under Bad Randomness

Authors: Nabiha Asghar & Yin Zhang

1 Introduction

In cryptography, a Key Exchange Protocol allows two parties to establish a common encryption/

decryption key (called a ‘session key’) so that they can communicate over an insecure channel in

encrypted mode. An Authentication Protocol allows them to confirm each other’s identity in a secure

manner. A hybrid of the two is an Authenticated Key Exchange (AKE) protocol. It consists of

two probabilistic polynomial time (PPT) algorithms that achieve the two goals of authentication and

key exchange simultaneously. A key feature of an AKE protocol is its use of random coins (i.e.

numbers where each bit is a random flip of a coin) to achieve its goals. For security purposes, these

coins are expected to be truly random. Therefore, it is only natural to consider a scenario where

the adversarial power encompasses the ability to meddle with the randomness of these coins and

consequently compromise the security of the protocol as well as the integrity of the long-lived secret

keys of the participants. This project is a study of the security of AKE protocols, given this adversarial

power.

2 Motivation

Typically in an AKE protocol, a pseudo-random number generator (PRNG) is used to generate the

random coins. A PRNG is a deterministic algorithm that requires a seed for its initialization. It then

outputs ‘pseudo-random’ coins that are computationally indistinguishable from truly random coins.

Due to this indistinguishability property, pseudo-random coins are considered safe to be used in an

AKE protocol. The only requirement is that the seed of the PRNG should be fresh (i.e. not repeated)

and truly random [7] because an adversary, who knows the PRNG algorithm and the seed used to

initialize a particular run of the PRNG, can predict the output of the PRNG and compromise the

security of the protocol. Hence the goal boils down to finding a source of truly random seeds, and

then protecting it against a security breach.

As the first step, let us consider a few examples of sources for seeds and show how some of them

may be unsafe.

i) One may consider using a computer deterministically to generate random seeds. This defies the

definition of ‘random’. In general, turing machines are incapable of generating truly random

numbers.

ii) The current time on a computer’s real-time clock, accessible by the time(0) command in C++

for example, is a commonly used seeding option. This is not entirely safe because it is possible

1

to track the approximate sending time of a data packet over a network. This shrinks the domain

considerably, allowing an adversary to use brute force to obtain the exact clock time used as the

seed.

iii) Lately, the idea of tapping the truly unpredictable randomness of the chaotic universe around us

is gaining popularity. This involves the use of physical/natural events as triggers/seeds for the

PRNG. One example is network traffic, or a user’s mouse clicks and keyboard strokes [10, 15].

Another example is the servers of http://www.random.org that use radio receivers to pick up

atmospheric noise caused by rain, thunderstorms etc. Another source of truly random seeds is

HotBits1, which makes use of the ‘inherent uncertainty in the quantum mechanical laws of nature’.

The random seeds are generated by timing successive pairs of radioactive decays detected by a

Geiger-Müller tube connected to a computer.

iv) Hardware is potentially a good source for random seeds. Intel’s Bull Mountain2 technology is

an example of a system that uses thermal noise within the resistors of a CPU to generate truly

random seeds.

We can see that there is no dearth of sources of truly random seeds. The question is whether

these seeds can be protected after they have been generated. More specifically, are there any practical

situations where the adversary has direct or indirect access to the entropy pool 3 of seeds? The answer

is in affirmative. If the adversary has physical access to a hardware source or if he can control the

events of a non-hardware source that is being used to generate seeds, he can manipulate the data in

the entropy pool. He may also gain access to the entropy pool itself. In a Linux operating system, for

example, the entropy may be stored in a buffer. An adversary may gain access to this buffer if it is

not well-protected. There may also be situations, such as in Virtual Machines [17] or smart cards [4],

where an adversary can reset a machine to make an AKE protocol reuse some random coins across

different sessions. An example of this may occur when an administrator takes snapshots of the current

system state of a Virtual Machine (VM) from time to time as regular backups, so that if it crashes, it

can be reverted back to a previous good state using the snapshots. To perform an adversarial reset,

an adversary makes a VM crash, perhaps by a Denial of Service (DoS) attack. This causes the system

administrator to revert the VM to a previous good state, thereby making it reuse some of the older

random coins.

Therefore, it is imperative to undertake a study of how to avoid the case of ‘bad randomness’, i.e.

a situation where the randomness generated within an AKE protocol has been compromised by an

adversary who can

1) directly pick random coins for the AKE participants (called the ‘Reset-1 Attack’), or

2) reset a participant to make it reuse some random coins (called the ‘Reset-2 Attack’).

1 http://www.fourmilab.ch/hotbits/

2 http://spectrum.ieee.org/computing/hardware/behind-intels-new-randomnumber-generator/0

3 Entropy is a collection of random bits collected by an operating system. Typically, these random bits come from

hardware sources such as mouse movements.

2

http://www.random.org

3 Project Goals and Layout

This project is a self-contained discourse on the security of AKE protocols under Reset-1 and Reset-2

attacks. Our goal is to study in detail the work of Yang et al. [18] and to present their analysis in

an elaborate and rigorous form by filling in any logical, computational or analytical details that the

authors may have left out intentionally or otherwise. The specific details of our additional contributions

are given at the end of this section.

Section 4 gives formal definitions of various terms used throughout this discourse and defines the

formal security models for Reset-1 and Reset-2 attacks. Section 5 gives concrete examples of some

famous AKE protocols that are insecure under either of the two attacks. Section 6 describes a generic

method to transform any Reset-2 secure AKE protocol to a new one which is also Reset-1 secure. This

is shown with the help of two theorems. Section 7 proposes two new protocols and gives formal proofs

of their security under the two attacks (via two theorems). Section 8 gives concluding remarks.

Our contribution to the work of Yang et al. [18] is threefold.

1. In section 5, we give Reset-1 and Reset-2 attacks on ISO [1, 5] and SIGMA [6, 13] protocols,

which have been completely omitted in the original paper.

2. In Sections 6 and 7, we give the proofs of Theorems 1 to 4 in complete detail, filling in the

various gaps in arguments and computations in the original paper. Moreover, the proofs in the

original paper are presented in a dense way and are hard to follow. We strive hard to improve

the presentation to make everything easily comprehensible to readers.

3. We implement the Reset-2 attack on the HMQV [12] protocol given in section 5. The implemen-

tation is done in Maple, using sockets to simulate each party participating in the protocol and

the attack.

4 Definitions and Security Models

We begin by giving descriptions of various components of an AKE Protocol and the definition of

non-negligibility in Section 4.1. Sections 4.2 and 4.3 give the complete security models for Reset-1

and Reset-2 attacks respectively. Section 4.4 gives the security models of the stronger version of the

attacks. For the sake of consistency and uniformity between this essay and the original paper, we keep

these definitions and descriptions very similar to those given by Yang et al. [18].

4.1 AKE Protocol Descriptions & the Notion of Non-negligibility

An Authenticated Key Exchange (AKE) protocol consists of two probabilistic polynomial time

algorithms: 1) a Secret Key Generation algorithm called SKG, which returns a public key and a secret

key upon each invocation, and 2) a protocol execution algorithm P that maps strings to strings. The

set of Protocol Participants is denoted by U∪MU , where U is a non-empty set of users registered in

the network in the initialization phase andMU is a set of malicious parties added into the network by

the adversary after the initialization phase. Each user U ∈ U has a unique ID string of a fixed length,

3

denoted by U . Each malicious user M ∈ MU also has a distinct, fixed-length ID string denoted

by M which has never been used to name another party in the network. Each user U ∈ U has a

pair of Long-Lived Keys (pkU , skU) generated by the SKG, where pkU is the public key and skU is

the secret key. However, for each user M ∈ MU , the adversary can set pkM to any value that has

never been used as the public key of another user in the system; skM is then chosen by the adversary

according to the value of pkM .

An Instance of a user denotes the readiness of a user to take part in a session. There may be

multiple instances of a user running concurrently, so the i’th instance of a user U is denoted by Πi
U . At

the time a new instance of a user U is created, a unique instance number i is chosen for U , a sequence

of random coins N i
U are tossed (i.e. a random number is chosen) and feeded to that instance, and the

instance enters the ‘ready’ state. The Protocol Execution Algorithm determines how an instance

of a user responds to messages from other users. It is a probabilistic algorithm that maps strings to

strings as follows.

(Mout, acc, term
i
U , sid

i
U , pid

i
U , ssk, St

i
U)→ P (1k, U, pkU , skU , St

i
U ,Min).

More specifically, when the instance Πi
U receives the message Min from another user or instance,

Πi
U runs the protocol algorithm P with the inputs U , pkU , skU , Min, a number 1k dependent on

the security parameter k, and the state information StiU = (N i
U , ‘ready’). The output consists of an

outgoing messageMout from Πi
U to the sender, the decision acc (accept/reject) made by Πi

U , and a third

component termi
U which indicates whether the protocol execution has been terminated. Optionally,

a session ID sidiU and a partner ID pidiU may be generated as an output, where the partner ID refers

to the ID of the user who sent Min to Πi
U . When acc = accept, ssk is another output of the protocol

execution. This ssk is the common session key shared by Πi
U and the sender which is to be used by

the upper layer applications. We assume that the state information StiU is erased from the memory

of U when termi
U = true i.e. when this particular run of the protocol terminates.

Finally, the Partnership between two instances is defined via partner ID (pid) and session ID

(sid). As described above, pid is the ID of the user with which the instance Πi
U believes it has just

exchanged a key, and sid is an ID which uniqely labels the AKE session. Two instances Πi
U and Πj

V

are partners if pidiU = V , pidjV = U and sidiU = sidjV .

The Notion of Non-Negligibility: Since we are in the paradigm of randomized algorithms, we

make extensive use of the notion of non-negligibility. We say that a function f : N → R is negligible

if for any positive integer c, there exists an integer Nc such that for all integers n > Nc, |f(n)| < 1
nc .

Equivalently, a function f : N → R is non-negligible if there exists a positive integer c such that for

any integer Nc, there exists an integer n > Nc such that |f(n)| ≥ 1
nc .

4.2 Security Model for Reset-1 Attack

In the Reset-1 model, we consider the scenario where the randomness of each instance is completely

controlled by the adversary. In other words, the adversary can choose the random coins for each

instance. The formal definition of the Reset-1 model is given in terms of the game RAKE-1, described

4

in Figure 1. Simply put, the goal of the adversary A is to distinguish between some random number

and the session key sski
∗
U∗ of a particular target instance Πi∗

U∗ . A plays the game RAKE-1, which

allows him to make six different types of queries. At the end, the game outputs a number which is

equally likely to be either a random key in the session-key space or the session key of Πi∗
U∗ . If A is able

to correctly distinguish between the two with high probability, he wins the game and we say that the

AKE protocol is insecure in the Reset-1 model.

Note that the session key is typically a function of the long-lived secret key and the random coins.

In the Reset-1 model, the adversary knows the random coins. If he also learns one of the two users’

long-lived secret key, he can trivially compute the session key. We therefore assume in this model that

the long-lived keys of all the users in U are securely generated using fresh random coins that are not

known to the adversary. We now describe each of the eight procedures given in Figure 1. Six of them

(2− 7) are the oracle queries that capture different adversarial capabilities.

Figure 1: Game RAKE-1 (Screenshot from Page 5 [18]

5

1. Initialize: In the initialization phase, the SKG algorithm is run and a public key/secret key pair

is chosen for each user U . TU denotes the set of instances of U and is initially empty. A ‘Timer’

bit is set to 0. A coin ‘b’ is flipped and its value is saved. This coin/bit is used later in the Test

query. The set MU of malicious users is set to empty. Finally, the public keys of all the users in

the network are returned and made public.

2. Register(U, pk): This oracle query allows the adversary A to register a new user U with public

key pkU , with the restriction that the ID string U and pkU must not already exist in the network.

U is then added to the set of malicious users.

3. NewInstance(U, i,N): This oracle query allows A to initialize a new instance Πi
U for user U with

the binary string N which serves as the sequence of random coins for Πi
U . The set TU is updated

to include this newly created i’th instance of U . The random coins N i
U and the readiness of Πi

U to

interact with other instances is captured in the state information StiU . Since Πi
U has not initiated

the protocol with any other user or instance yet, acciU and termi
U are set to false and the session

ID, partner ID and session key are set to null.

4. Send(U, i,Min): This oracle queries allows an adversary to initiate a session with the i’th instance

of U (i.e. Πi
U) by sending it a message Min. Now Πi

U runs the protocol P (1k, U, pkU , skU , St
i
U ,Min)

and all the output parameters except the state information and the session key are sent back to A.

5. Reveal(U, i): This oracle query allows A to obtain the session key sskiU , for any U ∈ U and i ∈ TU ,

if Πi
U has accepted and generated a session key sskiU . The ‘Timer’ bit which was set to 0 in the

initialization phase is updated to 1 and assigned to a variable Time[Reveal, (U, i)], whose non-zero

value denotes that the session key of Πi
U has been revealed to A.

6. Corrupt(U): This oracle query allows A to obtain the long-lived secret key skU for a user U . The

‘Timer’ bit is updated and assigned to a variable Time[Corrupt, U] whose non-zero value denotes

that U secret key has been corrupted by A.

7. Test(U∗, i∗): This oracle query allows A to choose a target instance Πi∗
U∗ , where U∗ must not be

in MU otherwise A himself is U∗. If Πi∗
U∗ has accepted and is holding a session key sski

∗
U∗ , then

the following happens. If the coin b, flipped in the Initialize phase, is 1, then sski
∗
U∗ is returned to

A, otherwise a random number is drawn from the session key space and returned to A. This query

can only be made once during one game.

8. Finalize(b′): In the finalization phase, A inputs a bit b′ to the game. If b′ = 1, A believes that

the key given to him by the Test procedure is sski
∗
U∗ , otherwise he believes he has been given some

random key. This procedure determines whether A has won the game or not. Note that there are

some queries which can help A compute sski
∗
U∗ trivially, so we exclude those possibilities in the

beginning of this finalization phase.

i. The first if-condition ensures that the partner V ∗ of this instance is not A himself.
ii. The second if-condition ensures that A has not obtained either of the two users’ long-lived

secret keys skU∗ and skV ∗ through the Corrupt query. This is important because A completely

controls the randomness in the Reset-1 model, so once a user is corrupted, A can trivially

derive all state information and session keys ever generated by that user.
iii. The third if-condition ensures that A has not obtained sski

∗
U∗ through the Reveal query.

6

iv. The fourth if-condition ensures that A does not obtain sski
∗
U∗ by the reset-and-replay attack.

In this attack, A first activates a protocol execution between the instances Πi
U and Πj

V , where

the random coins given to Πi
U are N i

U and those given to Πj
V are N j

V . Now A activates an

instance Πi′
U and instead of giving it new random coins, A gives it the same random coins N i

U .

Then he replays messages from Πj
V , thereby ensuring that sski

′
U = sskiU . Now if A uses the

reveal query on Πi
U , he trivially obtains sski

′
U . This type of attacks imply that as long as the

random coins of one instance Πi
U are being used by another instance Πi′

U , there is no security

guarantee on the session keys generated by these two instances. Therefore, this if-condition

ensures that there exists no instance of U∗ in the network that is using the same random coins

as Πi∗
U∗ .

v. The fifth if-condition ensures that if V ∗ has an instance Πj∗

V ∗ which is the partner instance

of Πi∗
U∗ , then A does not obtain the session key sskj

∗

V ∗=ssk
i∗
U∗ by the reset-and-replay attack.

More specifically, it ensures that sskj
∗

V ∗ is not using the random coins of any other instance of

V ∗ and its session key has not been obtained by A through the Reveal query.

After ensuring that A did not compute sski
∗
U∗ trivially, this procedure outputs the result of the

game, i.e. whether A has won the game by successfully identifying the value of b or not.

We now define the notion of security in the Reset-1 model with respect to game RAKE-1.

Definition 4.2.1: Let AKE be an AKE protocol. Let A be a Reset-1 adversary against AKE and n

a security parameter. The advantage of A in the game RAKE-1 is defined as

AdvRAKE-1
AKE,A (k) = Pr[RAKE-1AKE,A(n)→ true]− 0.5,

where Pr[RAKE-1AKE,A(n) → true] is the probability of A winning RAKE-1 against AKE . The

subtraction of 0.5 is to negate the chances of A winning the game by guessing the answer randomly.

We say that AKE is secure in the Reset-1 model if

i. in the presence of a passive adversary, the two partner instances output the same session key, and

ii. for any probabilistic polynomial time adversary A, AdvRAKE-1
AKE,A (n) is negligible.

4.3 Security Model for Reset-2 Attack

In the Reset-2 model, we consider the scenario where the adversary cannot set the value of the random

coins directly, but he can reset any user to make it reuse some older random coins. The formal definition

of the Reset-2 model is given in terms of the game RAKE-2, described in Figure 2, which is very similar

to RAKE-1.

The goal of the adversary A in the game RAKE-2 is the same as that in RAKE-1: he needs to

distinguish between a random number from the session key space and the session key sski
∗
U∗ of a target

instance Πi∗
U∗ . This model allows us to define forward secrecy , i.e., even if the adversary corrupts

the two users and obtains their long-lived secret keys, he should not be able to compute the session

key. The definitions of the six procedures Initialize, Register(U, pk), Send(U, i,Min), Reveal(U, i),

7

Figure 2: Game RAKE-2 (Screenshot from page 7 [18]

Corrupt(U) and Test(U∗, i∗) are exactly the same as those in RAKE-1. The two different procedures

and their descriptions are as follows.

1. NewInstance(U, i, j): This query allows A to initialize a new instance Πi
U of user U not by setting

its random coins directly, but by making it re-use the random coins RjU of the instance Πj
U that

has already been initialized. A can also let j =⊥, which means that A can let Πi
U use fresh random

coins unknown to A.

2. Finalize(b′): In the finalization phase, A inputs a bit b′ to the game as in RAKE-1. This procedure

determines if A has won the game or not. There are some queries that can help A compute sski
∗
U∗

trivially, so we exclude those possibilities in the beginning of the finalization phase.

i. The first if-condition ensures that the partner V ∗ of this instance is not A himself.
ii. The second if-condition ensures that there exists no instance of U∗ in the network that is using

the same random coins as Πi∗
U∗ , because the existence of such an instance implies that A has

already launched a reset-and-replay attack against Πi∗
U∗ and can trivially compute sski

∗
U∗ as

explained in section 4.2.
iii. The third if-condition ensures that A has not obtained sski

∗
U∗ through the Reveal query.

iv. The fourth if-condition ensures that if Πi∗
U∗ has a partner instance Πj∗

V ∗ , then A does not use

the Reveal query on that instance. Moreover, it ensures that no instance of V ∗ in the network

uses the same random coins as Πj∗

V ∗ . This is to prevent A from launching a reset-and-replay

attack against Πj∗

V ∗ .

8

v. If Πi∗
U∗ has a partner ID V ∗ but no partner instance and A corrupts V ∗, then an acceptance

by Πi∗
U∗ implies that A posed successfully as V ∗ and thus obtained the session key sski

∗
U∗ . The

last else-condition ensures that this does not happen.

After ensuring that A did not compute sski
∗
U∗ trivially, this procedure outputs the result of the

game, i.e. whether A has won the game by successfully identifying the value of b or not.

We now define the notion of security in the Reset-2 model with respect to game RAKE-2.

Definition 4.3.1: Let AKE be an AKE protocol. Let A be a Reset-2 adversary against AKE and n

a security parameter. The advantage of A in the game RAKE-2 is defined as

AdvRAKE-2
AKE,A (n) = Pr[RAKE-2AKE,A(n)→ true]− 0.5,

where Pr[RAKE-2AKE,A(n) → true] is the probability of A winning RAKE-2 against AKE . We say

that AKE is secure in the Reset-2 model if

i. in the presence of a passive adversary, the two partner instances output the same session key, and

ii. for any probabilistic polynomial time adversary A, AdvRAKE-2
AKE,A (n) is negligible.

4.4 Strong-Corruption Security Models for Reset-1 and Reset-2 Attacks

We may call the models described above the ‘weak corruption models’, where the adversary can obtain

a user’s long-lived secret key or any session key through oracle queries. However he cannot explicitly

ask to view the state information of any particular instance in the network. If this power is added to

adversarial capabilities, the models are called ‘strong corruption models’. (It is worthwhile to note here

that in Reset-1 model, the adversary knows the state information of an instance only at the moment of

creation of that instance, because he explicitly assigns random coins of his own choice to that instance.

On the other hand, in Reset-2 model, the adversary does not know the state information of an instance

even at the time of its creation.) More specifically, the following procedure, called RevealState, is

added to RAKE-1 and RAKE-2.

procedure RevealState(U, i)

If (U ∈ U ∨ i ∈ TU) then return Invalid

Timer ← Timer+1; Time[RevealState, (U, i)]← Timer

return StiU
Due to this additional adversarial power, changes need to be made to the procedure Finalize in

both the models. This is especially important in the Reset-2 model. Since we allow the adversary

A to corrupt the two users U∗ and V ∗ in Reset-2 model, we cannot allow him to see any random

coins assigned to Πi∗
U∗ or Πj∗

V ∗ during the protocol, otherwise he can compute sski
∗
U∗ trivially. The

altered procedure incorporates this check wherever the check for the Reveal query occurs. The altered

procedure looks as follows.

procedure Finalize(b′)

...

9

If (Time[Reveal,(U∗, i∗)] ∨ Time[RevealState, (U∗, i∗)]) then return false

...

If (Time[Reveal,(V ∗, j∗)] ∨ Time[RevealState, (V ∗, j∗)]) then return false

...

5 Security Analysis of Existing Protocols

In this section, we show that some of the widely used AKE protocols are insecure under Reset-1 and/or

Reset-2 attacks. Section 5.1 gives Reset-1 and Reset-2 attacks on the ISO protocol [1, 5]. Section 5.2

gives Reset-1 and Reset-2 attacks on the SIGMA protocol [6, 13]. Section 5.3 gives a Reset-2 attack

on the HMQV [12] protocol that is due to Menezes and Ustaoglu [16].

5.1 Reset-1 and Reset-2 Attacks on the ISO Protocol

The ISO protocol is described in Figure 3. This protocol uses the signature-based Diffie-Hellman

paradigm. The signature scheme used is one of those specified in the Digital Signature Standard

(FIPS 186-3 [2]). Here, we take our signature scheme to be Digital Signature Algorithm, which is

described below.

Digital Signature Algorithm: Let p be a large prime (typically 1024 bits in length), and q a prime

divisor of p−1 (160 bits in length). Let g be the generator of a subgroup of order q mod p, so g = h
p−1
q

mod p for some arbitrary 1 < h < p − 1. Let x be the secret signing key known only to the signer

such that 0 < x < q. Let y be the public key, where y = gx mod p. Let H(.) be a hash function (e.g.

SHA-1). Let m be the message to be signed. The signing algorithm consists of the following steps.

- Choose a random number k between 0 and q.

- Compute r = ((gk) mod p) mod q.

- Compute s = (k−1(H(m) + xr)) mod q.

- Return the tuple (r, s) as the signature on m.

Figure 3: The ISO Protocol (Screenshot from page 9 [18]

10

Reset-1 Attack: It can be seen that the security of the session key depends only on the security of

the random numbers x and y because g is public. Since the adversary chooses these values directly

for the users, he can trivially compute the session key.

Reset-2 Attack: The goal of the adversary is to make an honest user U sign two different messages

(in two different sessions) with the same random parameter. This results in leakage of U ’s long-lived

secret signing key skU . Let D be the adversary and let A and B be two honest protocol participants.

D carries out the Reset-2 attack as follows.

1. In a session between A and B, D controls the random number k chosen by A while signing the

message m1. So the signature is (r = gk, s1 = k−1(H(m1) + skAr)) mod q.

2. In a second session between A and B, D assigns the same k to A while A is signing the message

m2. The signature is (r = gk, s2 = k−1(H(m2) + skAr)) mod q. Since V is an honest participant,

m1 6= m2 with high probability. Therefore s1 6= s2 with high probability.

3. For D, the equation s1
s2

= H(m1)+skAr
H(m2)+skAr

mod q has exactly one unknown skA, which can be found by

the formula skA =
H(m1)s−1

1 −H(m2)s−1
2

rs−1
2 −rs

−1
1

mod q.

Therefore, the ISO protocol is insecure under both Reset-1 and Reset-2 attacks.

5.2 Reset-1 and Reset-2 Attacks on the SIGMA Protocol

The SIGMA [6, 13] protocol is described in Figure 4. This protocol also uses the signature-based

Diffie-Hellman paradigm and we assume our signature scheme to be the Digital Signature Algorithm.

Here, x and y are random numbers chosen by the participants A and B, as in the ISO protocol. The

session key Ks, the MAC key Km and the encryption key Ke are all derived from the Diffie-Hellman

(DH) value gxy, with the restriction that the three should be pairwise computationally independent

(i.e. no information on one can be learned from the other). The purpose of the encryption key is

identity protection.

Figure 4: The SIGMA Protocol

Reset-1 Attack: Since the session key Ks is derived from the DH-value gxy whose security depends

only on the security of x and y, the adversary can trivially compute Ks.

Reset-2 Attack: Since the DH-value is known to the adversary D, D can compute the encryption

key Ke to obtain the signatures produced by either of the two parties. Now D makes A sign two

different messages using the same random parameter k. As explained in Section 5.1, this results in

leakage of the signing key skA to D.

11

Therefore the SIGMA protocol is insecure under both Reset-1 and Reset-2 attacks. In general,

any protocol that uses signatures schemes following the Fiat-Shamir paradigm [11] is insecure in the

Reset-2 model due to attacks similar to the ones described above. A well-known example is the JFK

protocol [3].

5.3 Reset-2 Attack on the HMQV Protocol

The HMQV protocol is described in Figure 5.

Figure 5: The HMQV Protocol (Screenshot from page 9 [18]

The protocol is implemented in a subgroup G of Z∗p , where |G| = q. A generator of G is g. A and

B are ID strings of two users. H(.) and H ′(.) are secure hash functions. x+ da and y + eb are in Zq.

We have implemented the original protocol as well as a reset attack on HMQV in Maple. Both

H(.) and H ′(.) are chosen to be SHA-512 because of its high security. User A and B get random coins

from a random source which is a different process. All communications are Maple sockets and the

code runs over a local network. More information on how to run the code is in the Readme.txt file of

the electronic code submission. The program works for both baby steps and giant steps.

Below are the screenshots of one run of the protocol using baby step.

Random Source:

Setting random seed state to 1.

Random Source started from My-PC on port 2526...

Sending random number 1791095846 to Alice...

Sending random number 3093770125 to Bob...

12

Alice:

p=1078819810719733898616179

q=4020067529

g=13734109252404941657517

5 pt User ID=Alice

Private Key=1487080512

Public Key=112922129858467004249048

Alice is listening from My-PC on port 2525...

Initiating a new instance with Bob... Random number : x=1791095846

Sent data : [A=Alice, B=Bob, X=43135584890538308818335]

Received data : [B=Bob, A=Alice, Y=167661104375601076802611]

d=33948

e=64473

sigma a=382150720436363805945041

Session Key=5907

Alice is listening from My-PC on port 2525...

Bob:

p=1078819810719733898616179

q=4020067529

g=13734109252404941657517

User ID=Bob

Private Key=2381728904

Public Key=725665444125753304703327

Requesting to start a new instance with Alice...

Received data : [A=Alice, B=Bob, X=43135584890538308818335]

Random number : y=3093770125

Sent data : [B=Bob, A=Alice, Y=167661104375601076802611]

d=33948

e=64473

sigma a=382150720436363805945041

Session Key=5907

We now describe a Reset-2 attack on the HMQV protocol. The attack is originally due to Menezes

and Ustaoglu [16]. It assumes that (p − 1)/q has several small relatively prime factors t1, t2, ..., tn

(each less than 40 bits) and that
∏n
i=1 ti > q. The attack is as follows.

1. The adversary corrupts a user B and obtain B’s long-lived secret key b.

2. The adversary activates a new instance of A.

13

3. After receiving (A,B,X) from A, the adversary choose Y ∈ Z∗p of order t1 and send (B,A, Y)

to A.

4. Since the HMQV protocol does not require A to check whether Y belongs to Z∗p , A computes

the session key as σA = (Y pkeB)s = Y spkesB = Y s(gs)be = Y s(XpkdA)be where s = x+ da mod t1

and K = H ′(σA).

5. The adversary cannot compute the session key because he does not know the value of y. In the

normal protocol, y is chosen randomly and then Y = gy is computed. In the attack, Y is chosen

first; then solving for y is a discrete log problem. However, the adversary can issue a Reveal

query against A to get the session key K = H ′(Y s(XpkdA)be). Then, the adversary iteratively

computes K ′ = H ′(Y c1(XpkdA)be) for c1 = 0, 1, 2, ... until K ′ = K. Since t1 has less than 40 bits,

it is computational feasible to carry out this brute force attack to find K ′. Now Y ≤ t1 and

c1 = s = x+ da mod t1.

6. The adversary now issues a reset-2 attack to reset A. He repeats the attack for t2, t3, ..., tn for

the same value of x to compute c2, c3, ..., cn.

7. In the HMQV protocol, s = x+ da mod q. The adversary has already computed ci = s mod ti

for i = 1, 2, ..., n. The requirement of the attack is
∏n
i=1 ti > q. Solving these congruences by

Chinese Reminder Theorem yields s in Zq.

8. The adversary now corrupts another party C and repeat steps 1-7 to compute s′ = x+ d′a mod

q.

9. Obsserve that d 6= d′ with high probability because d = H(X,B) and d′ = H(X,C), and B

and C are different user ID strings. The adversary computes A’s private key using the formula

a = (s− s′)/(d− d′) mod q.

We have implemented this Reset-2 attack in Maple. See the Readme.txt for information on how to

run the code. The file ‘adversary.mpl’ represents the adversary. The adversary is able to send Reset-2

package to the random source to simulate the Reset-2 attack. The attack works for both baby-steps

and giant-steps. We give below a few screenshots of the results of the attack that uses giant steps.

The size of the parameters are p=1024 bits, q=80 bits and ti=10 bits.

Random Source:

Setting random seed state to 1

Random Source started from My-PC on port 2526...

Simulating RESET2 Attack by resetting the random seed; users will reuse past random numbers.

Sending random number 95775497340659061015434 to Alice...

14

Alice:

p=948713216839865253756116499231909893537005115116883213147082232679106121940697

69583359433709792126805718561261287316136273295218795157616679329700532376320755

12597137402858515398248654186797052839641638856995071981440758591462382017208935

4500105245737867615234688879533207774395987689130398182956833921972839

q=1042023093397494815726129

g=290649166341360373046867988945575704873067428321356931711811735441865623694310

95926466513616802713251652370034507269456175821108919320614753562478221908426820

76668113749404316867583625877119697777999290632221760592148419745562356191198952

5248572817179160516946957887155974480517259317783507428525865988216459

User ID=Alice

Private Key=819349744456646322225879

Public Key=353569997329866323134748875274192652285182803263786204773812331248326

51204889456867179362565297198436581601616940038825638671497610274856234921416598

82706807245125209027946442289666683108029633943447535414303836652453296053143788

0639009877855830846567951584274626998899295504160995803742075610864106216872621

Initiating a new instance with Bob...

Random number: x=95775497340659061015434

Sent data: [A=Alice, B=Bob, X=504144026654575389792482577120606435309048561070648366

63102941155770973027854777249279267883194921029378222908771027432422183309289185

48106571145667467209222819412380903882206193602544248616547913250803051407359392

041574925937895607156081296687320537408460874579808295020143120365429181256

9061889107413770534]

Received data: [B=Bob, A=Alice, Y=259848158271210878284978566348118960224238131985557

888133035557642972966691720500348058725798576037552621549359355401663244351653230

078515020381029529328481622044392989972507929131129310361276426746618690169751493

626960828232682671871065012520519104170361952586070020473118131996850611

03198927535140110522607]

d=725808913012

e=820891361840

sigma a=294902873467520858263698838400865783686472317301342749126944521307141027

27248657891293981520379328565918399216517905283360267200361668683199963706831461

68671431711542119402374530074267792089901720534104712192013271698989359208752422

2378456699900509027824245925140889041151245186870129474530082127059710465118

Session Key=205457886658

Alice is listening from My-PC on port 2525...

15

The adversary now computes c1, ..., c10. We only show screen shots of the first and the last iteration.

Adversary:

Requesting to start a new instance with Alice...

Received data: [A=Alice, B=Bob, X=50414402665457538979248257712060643530904856107064

83666310294115577097302785477724927926788319492102937822290877102743242218330928

91854810657114566746720922281941238090388220619360254424861654791325080305140735

939204157492593789560715608129668732053740846087457980829502014312036542918

12569061889107413770534]

Chosen Y value: Y=2598481582712108782849785663481189602242381319855578881330355576

429729666917205003480587257985760375526215493593554016632443516532300785150203810

295293284816220443929899725079291311293103612764267466186901697514936269608282326

826718710650125205191041703619525860700204731181319968506110319892753514011 0522607

Sent data: [B=Bob, A=Alice, Y=259848158271210878284978566348118960224238131985557888

133035557642972966691720500348058725798576037552621549359355401663244351653230078

515020381029529328481622044392989972507929131129310361276426746618690169751493626

9608282326826718710650125205191041703619525860700204731181319968506110319

8927535140110522607]

d=725808913012

e=820891361840

Adversary is sending magic power to Alice for revealing the last session key.

Session Key=205457886658

Start to search c1 in range 1 to 587...

c1=458

.

.

.

.

.

16

Requesting to start a new instance with Alice...

Received data : [A=Alice, B=Bob, X=504144026654575389792482577120606435309048561070648

366631029411557709730278547772492792678831949210293782229087710274324221833092891

854810657114566746720922281941238090388220619360254424861654791325080305140735939

204157492593789560715608129668732053740846087457980829502014312036542918

12569061889107413770534]

Chosen Y value : Y=86461736468078337644191908480876709253714065161832094485380804532

352810890991203973985449612545680842780823568137064223970937686498757069361115799

426361250549661724892176715120908627844689307412897575376322746348599295812333362

87656470470073671097372612300512499401207465587859266401336791799268356791 4142810

Sent data : [B=Bob, A=Alice, Y=8646173646807833764419190848087670925371406516183209448

538080453235281089099120397398544961254568084278082356813706422397093768649875706

936111579942636125054966172489217671512090862784468930741289757537632274634859929

581233336287656470470073671097372612300512499401207465587859266401336791

7992683567914142810]

d=725808913012

e=517613695431

Adversary is sending magic power to Alice for revealing the last session key.

Session Key=17888234823

Start to search c10 in range 1 to 613...

c10=487

Using Chinese Remainder Theorem to solve s.

s=808863069151620963121511

d=725808913012

The adversary now corrupts another party Carol and repeats the above attack to compute c1’=376,

..., c10’=93.

Using Chinese Remainder Theorem to solve s’.

s’=47054196940604633906730

d’=1098730398360

Alice private key has been hacked.

Private Key=819349744456646322225879

Running Time Analysis: The machine we used to implement this code is an Intel Core 2 E6300.

It takes 0.039802 seconds per iteration to search for ci in step 5 of the attack. In step 5, there will be

(2m)/2 iterations on average, where m is the length of ti. The running time is bounded by the largest

length of ti. Assume, in the worse case, that the size of each ti is m bits. Also, assume that q is about

17

80 bits, as in partice. There will be d2 ∗ 80/me iterations for both B and C. The running time is

estimated by the formula f(m) = 0.039802 ∗ d80/me ∗ 2m, where m is the maximum size of ti. Below

is a table to show the approximate running time of the code in Maple for different values of m.

m Running Time

10 5 mins

15 2 hours

20 2 days

25 61 days

30 4 years

35 130 years

40 2275 years

The running time is much slower than expected. One reason is that the implementation is done

in Maple. If it is done is C, it would be faster. Another reason is that we are using SHA-512 and

it is a slow hash function. One simplification we have done is to store t1, t2, ..., tn and the group

member with order of ti in the public key file. In practice, the adversary can obtain this information

by brute force because of the small size of ti. Another simplification we did is to only return the last

session key when the adversary is launching the Reveal query. In general, the adversary can reveal

any session key. However, it requires us to add a session ID and exchange such information in the

protocol. The simplification will work as long as user A is only talking to the adversary during the

attack. In summary, the attack requires the adversary to have three special powers. He should be

able to

- issue the Reset-2 attack,

- obtain two legitimate users’ private keys, and

- reveal each session key from one party.

It is worth mentioning here that for this attack to be successful, the adversary needs a lot of special

powers. The attack is unlikely in practice. However, it is not impossible.

6 Transformation from Reset-2 Security to Reset-1 & Reset-2 Se-

curity

As we saw in sections 4.2 and 4.3, the Reset-1 and Reset-2 models are incomparable because the former

cannot capture the notion of forward secrecy and the latter can. In general, security in the Reset-2

model does not automatically imply security in Reset-1 model. An example is the ISO-R2 protocol

shown in Figure 6. Theorem 3 shows that ISO-R2 is Reset-2 secure. However, it is insecure in the

Reset-1 model because controlling the random coins directly enables the adversary to compute the

session key. In this section, we describe how Reset-2 security can be converted into both Reset-1 and

Reset-2 security by doing a simple transformation that involves pseudo-random function families and

strong randomness extractors. Therefore, to construct a protocol that is secure in both the models,

18

one only needs to construct a Reset-2 secure protocol and then apply the transformation to make

it Reset-1 secure as well. We first define pseudo-random function families and strong randomness

extractors.

Pseudo-Random Function Family: Let F be a set of efficiently computable functions fk : D → R
from domain D to range R such that each function in F takes a random number k ∈ K from the key

space as a hidden seed. F is called a pseudo-random function family if no polynomial time algorithm can

distinguish, with high probability, between a truly random function and a function chosen randomly

from F. More formally, F is a pseudo-random function family if for any polynomial time algorithm A,

the advantage

Advprf
F,A(n) = Pr[Afk(.)(1n) = 1]− Pr[ARF (.)(1n) = 1] (1)

is negligible, where fk is a function chosen randomly from F, RF : D → R is a truly random function

and n is a security parameter.

Strong Randomness Extractors [9]: Strong randomness extraction is a way of converting semi-

random input to an output that is close to being truly random. More formally, let F be a set of

efficiently computable functions fk : D → R from domain D to range R such that each function in

F takes a random number k ∈ K from the key space as a hidden seed. Let X be a random variable

over D that has min-entropy4 m (so X is the semi-random input). If k is chosen uniformly at random

from K and r is chosen uniformly at random from R, then F is called a strong (m, ε)-extractor if the

statistical distance5 between the two distributions k||fk(X)6 and k||r is at most ε. For our purpose,

we only require k||fk(X) and k||r to be computationally indistinguishable.

Now we give a transformation for a Reset-2 secure protocol Π. Theorem 1 shows that the resulting

protocol Π′ is Reset-1 secure. Theorem 2 shows that the incorporation of a strong randomness extractor

makes Π′ secure in Reset-2 model as well.

The Transformation: Let Π = (SKG, P) be a Reset-2 secure protocol and let F = {fk : {0, 1}ρ(n) →
{0, 1}l(n)|k ∈ {0, 1}δ(n)} be a pseudo-random function family where n is a security parameter, ρ(n), l(n)

and δ(n) are all polynomials of n, and l(n) denotes the maximum number of random bits needed by

a user in the execution of P. Construct a new procotol Π′=(SKG’, P’) as follows.

- SKG’: run SKG(1n) to generate (pk, sk), select k ← {0, 1}δ(n). Set pk′ = pk and sk′ = (sk, k).

- P’: get a ρ(n)-bit random string r, then compute r′ ← fk(r) and run P with the random coins r′.

Essentially, this transformation introduces ‘internal randomness’ within the protocol. This means

that even if the adversary directly or indirectly assigns the random coins of his own choice to a user U ,

U re-randomizes them by passing them through a pseudo-random function family at the very beginning

4 Minimum entropy (min-entropy in short) is a measurement of the amount of randomness present in a variable in the

worst case. If X is a random variable, the min-entropy of X is the largest number t such that all events occur with

probability ≤ 1/2t.

5 Page 12 of http://www.engr.uconn.edu/∼akiayias/cse364fa07/Cryptograph Primitives and Protocols.pdf.

6 This means the value of k is concatenated with each value of fk(X).

19

of the protocol. The resulting random coins are then used throughout the rest of the protocol and

they are computationally indistinguishable from truly random coins.

Theorem 1: If Π is a secure AKE protocol in the weak-corruption (strong-corruption) Reset-2 model,

and F is a pseudo-random function family, then Π′ is a secure AKE protocol in the weak-corruption

(strong corruption) Reset-1 model.

Proof Sketch: We proceed by way of contradiction. Given an adversary A that breaks Π′ in the

Reset-1 model, we construct another adversary B that breaks Π in the Reset-2 model. Suppose that

the session targeted by A is between the users U∗ and V ∗. Then B’s goal is to target the same session

in the Reset-2 game. B simulates the Reset-1 game for A by answering any queries related to U∗

and V ∗ using the oracles available to it in the Reset-2 game, and the rest of the queries by doing

computations on its own. We show that A does not notice that it is in a simulated game because F is

a pseudo-random function family. Therefore, since A wins the Reset-1 game with high probability by

breaking the session between U∗ and V ∗, B wins the Reset-2 game with high probability by breaking

the same session.

Proof: The proof is by contradiction. Let A be an adversary that breaks Π′ in the Reset-1 model

with non-negligible advantage by targetting a session between users U∗ and V ∗. We construct another

adversary B who breaks Π in the Reset-2 model with non-negligible advantage. We do this by first

constructing a restricted adversary A1 against Π′ in RAKE-1 who can only target sessions between

U∗ and V ∗ (and hence it cannot use the Corrupt query on U∗ and V ∗). We then modify RAKE-1 to

a new game G1, and calculate A1’s advantage against Π′ in G1. We then modify G1 to obtain a new

game G2 and compute A1’s advantage against Π′ in G2. Finally we let B simulate the game G2 for

A1, and show that B can win RAKE-2 with non-negligible advantage.

Construct a restricted adversary A1, from A, against Π′ as follows. After the initialization phase,

A1 outputs two distinct user IDs U∗ and V ∗ from the set U . A1 now simulates RAKE-1 for A as

follows. A1 answers all the queries made by A using its own oracles, and if A invokes the Corrupt

query on U∗ or V ∗, then A1 inputs a random bit to the Finalize procedure and aborts. Let E denote

the event that A invokes the Test query with input (I∗, j∗) such that (I∗, pidj
∗

I∗) = (U∗, V ∗). If E does

not occur, then A1 inputs a random bit to the Finalize procedure and aborts. If E occurs, then A1

invokes its own Test oracle-query with the same input and returns the response it gets to A. Finally,

when A inputs a bit b′ to the Finalize procedure, A1 also inputs b′ to the Finalize procedure and

aborts.

Let m be the total number of users in the network. Observe that if E does not occur, the

probabilty of A1 winning RAKE-1 against Π′ is 0.5. Moreover, U∗, V ∗ are chosen randomly by A1, so

Pr[E]= 1
m(m−1) . Therefore

20

Advrake-1
Π′,A1

(n) = Pr[RAKE-1Π′,A1(n)→ true|E]Pr[E] + Pr[RAKE-1Π′,A1(n)→ true|¬E]Pr[¬E]− 1

2

= Pr[RAKE-1Π′,A1(n)→ true|E]Pr[E] +
1

2
Pr[¬E]− 1

2

= Pr[RAKE-1Π′,A1(n)→ true|E]Pr[E] +
1

2
(1− Pr[E])− 1

2

= (Pr[RAKE-1Π′,A1(n)→ true|E]− 1

2
)Pr[E]

≥ (Pr[RAKE-1Π′,A(n)→ true]− 1

2
)Pr[E] ∵ if E occurs and A wins, then A1 also wins

=
1

m(m− 1)
Advrake-1

Π′,A (n) (2)

Now we modify RAKE-1 for Π′ by replacing the function fk∗U (.) with a truly random function

RF(.), where fkU∗ (.) is the pseudo-random function (belonging to the pseudo-random function family

F) with key kU∗ used by U∗ in the RAKE-1. Call this game G1.

Claim 1.1: The difference between A1’s advantages in RAKE-1 and G1 is negligible.

Proof: We show that if this difference is non-negligible, then we can construct an adversary D such

that Advprf
F,D(n) is non-negligible, therefore it can break the pseudo-random function family.

Let D be an adversary against F with access to an oracle O, which is either a truly random function

RF(.) or a pseudo-random function fk(.). D wishes to determine which of these is O. To achieve this

goal, D simulates RAKE-1 for A1 by using A1’s oracles to answer all of A1’s queries, except that D

simulates the pseudo-random function fkU∗ (.) of U∗ by asking its own oracle O. If A1 wins RAKE-1,

D outputs 1 and aborts, otherwise D aborts without any output. By (1), we have

Advprf
F,D(n) = Pr[Dfk(.)(1n) = 1]− Pr[DRF(.)(1n) = 1]

= Pr[A1wins the game|O = fk(.)]− Pr[A1wins the game|O = RF]

= Pr[RAKE-1Π′,A1(n)→ true]− Pr[G1
Π′,A1

(n)→ true]

= Advrake-1
Π′,A1

(n)−AdvG
1

Π′,A1
(n).

We see from this equation that if the difference between A1’s advantages in the two games is non-

negligible, then D has a non-negligible advantange in breaking the pseudo-random function family, a

contradiction. This completes the proof of the claim.

Now we modify G1 for Π′ by replacing the function fk∗V (.) with a truly random function RF(.),

where fkV ∗ (.) is the pseudo-random function (belonging to F) with key kV ∗ used by V ∗ in G1. Call

this game G2.

Claim 1.2: The difference between A1’s advantages in G1 and G2 is negligible.

Proof: We show that if this difference is non-negligible, then we can construct an adversary D such

that Advprf
F,D(n) is non-negligible, therefore it can break the pseudo-random function family.

Let D be an adversary against F with access to an oracle O, which is either a truly random function

RF(.) or a pseudo-random function fk(.). D wishes to determine which of these is O. To achieve

21

this goal, D simulates G1 for A1 by using A1’s oracles to answer all of A1’s queries, except that D

simulates the pseudo-random function fkV ∗ (.) of V ∗ by asking its own oracle O. If A1 wins G1, D

outputs 1 and aborts, otherwise D aborts without any output. By (1), we have

Advprf
F,D(n) = Pr[Dfk(.)(1n) = 1]− Pr[DRF(.)(1n) = 1]

= Pr[A1wins the game|O = fk(.)]− Pr[A1wins the game|O = RF]

= Pr[G1
Π′,A1

(n)→ true]− Pr[G2
Π′,A1

(n)→ true]

= AdvG
1

Π′,A1
(n)−AdvG

2

Π′,A1
(n).

We see from this equation that if the difference between A1’s advantages in the two games is non-

negligible, then D has a non-negligible advantange in breaking the pseudo-random function family, a

contradiction. This completes the proof of the claim.

Now given an adversary A1 against Π′ in game G2, we construct an adversary B against Π in the

game RAKE-2 that simulates G2 for A1. B’s aim is to target the session between U∗ and V ∗. In the

Initialization phase for A1, B gives the public keys of all the users to A1. After A1 outputs U∗ and

V ∗, B uses the Corrupt query to learn the long-lived secret keys of all the users in the set U\{U∗, V ∗}
(note that A1 never invokes the Corrupt query on U∗ and V ∗, so B does not need to corrupt these

two). B also chooses kJ ← K for all J ∈ U\{U∗, V ∗}; these are the keys that are part of the secret

keys used in Π′. Now B simulates the game G2 for A1 as follows.

- When A1 makes a Register query with input (I, pkI), B makes a Register query to its own oracle

with the same input.

- When A1 makes a NewInstance query with input (I, j,N) for some user I,

(a) if I /∈ {U∗, V ∗}, B performs the operations in the NewInstance procedure of G2 itself.
(b) if I ∈ {U∗, V ∗}, B checks if A1 has ever made a NewInstance query with input (I, j′, N) where

j′ 6= j (basically, B is checking if it needs to reset an instance of I). If it has, B makes a

NewInstance query with input (I, j,Nj′) where Nj′ are the random coins assigned to Πj′

I . If

not, B makes a NewInstance query with input (I, j,⊥), where ⊥ denotes any randomly chosen

coins.

- When A1 makes a Send query with input (I, j,Min),

(a) if I /∈ {U∗, V ∗}, B performs the operations in the Send procedure of G2 itself (B invokes the

protocol P ′ using kI as the key of the pseudo-random function).
(b) if I ∈ {U∗, V ∗}, B makes a Send query to its own oracle with the same input and returns to

A1 whatever response it gets.

- When A1 makes a Reveal or RevealState query with input (I, j), B answers them in a way exactly

analogous to the Send query.

- When A1 makes a Corrupt query, it cannot be on U∗ or V ∗. Since B has corrupted every other user,

it answers this query using its own computations.

- When A1 makes a Test query with input (I, j), then (I, pidjI) = (U∗, V ∗). Then B makes a Test

query to its own oracle with the same input and returns to A1 whatever response it gets.

22

- When A1 inputs a bit b′ to the Finalize procedure, B also inputs b′ to the Finalize procedure in

RAKE-2 and aborts.

The way B simulates G2 for A1, there is no way for A1 to know that it is simulated. Also, A1

and B are attacking the same session, so if A1’s input to the Test query clears all the if-conditions in

the Finalize procedure of G2, then B’s input to the Test query also clears all the if-conditions in the

Finalize procedure of RAKE-2. So the probability of B winning RAKE-2 is at least the probability of

A1 winning G2. Hence

Advrake-2
Π,B (n) = Pr[RAKE-2Π,B(n)→ true]− 1

2

≥ Pr[G2
Π′,A1

(n)→ true]− 1

2

= AdvG
2

Π′,A1
(n)

= AdvG
1

Π′,A1
(n)−Advprf

F,D(n) by Claim 1.2

= Advrake-1
Π′,A1

(n)− 2Advprf
F,D(n) by Claim 1.1

≥ 1

m(m− 1)
Advrake-1

Π′,A (n)− 2Advprf
F,D(n) by (2)

By assumption, Advrake-1
Π′,A (n) is non-negligible, so there exists a positive integer c such that |Advrake-1

Π′,A (n)|
≥ 1

nc for sufficiently large n. Since Advprf
F,D(n) is negligible, we have

|Advrake-2
Π,B (n)| ≥ 1

m(m−1) |Advrake-1
Π′,A (n)| ≥ 1

m(m−1)
1
nc ≥ 1

na for a sufficiently large a. So Advrake-2
Π,B (n) is

non-negligible, a contradiction. This completes the proof of Theorem 1.

Theorem 1 says that given a Reset-2 secure protocol, we can obtain a Reset-1 secure protocol by

applying the transformation. In general, however, the new protocol may not be secure in the Reset-2

model. More specifically, in the Reset-2 model, the adversary is allowed to corrupt the long-lived

secret key sk′U∗ = (skU∗ , kU∗) of the user U∗ that he inputs to the Test query. Since the security of

the pseudo-random function fkU∗ relies on the secrecy of kU∗ and kU∗ is known to the adversary, we

cannot assume that the output of fkU∗ is still computationally indistinguishable from truly random

coins. So even if the input r to fkU∗ is truly random, the output fkU∗ (r) may not be random from

the point of view of the adversary. To solve this problem, we add the condition that the F used in the

transformation should be a strong randomness extractor. So now, even if the adversary knows kU∗ ,

the distribution kU∗ ||fkU∗ is computationally indistinguishably from a truly random distribution. The

next theorem shows that the transformed protocol is secure in the Reset-2 model, provided that the

pseudo-random function family is also a strong randomness extractor.

Theorem 2: If Π is a secure AKE protocol in the weak-corruption (strong-corruption) Reset-2 model

and F is a pseudo-random function family and a strong randomness extractor, then Π′ is secure in the

weak-corruption (strong-corruption) Reset-2 model.

Proof Sketch: We proceed by way of contradiction. Given an adversary A that breaks Π′ in the

Reset-2 model, we construct another adversary B that breaks Π in the Reset-2 model. Suppose

that the session key targeted by A is between the users U∗ and V ∗. Then B’s goal is to target the

23

same session key in the Reset-2 game. We break the proof into two cases, depending on whether the

instance input by A into the Test query has a partner instance or not. In each case, we first construct

a restricted adversary A1 against Π′ in RAKE-2 who can only target sessions between U∗ and V ∗.

We then modify RAKE-2 to a new game G1, and calculate A1’s advantage against Π′ in G1. We then

modify G1 to obtain a new game G2 and compute A1’s advantage against Π′ in G2. Finally we let

B simulate the game G2 for A1. We show that A1 does not notice that it is in a simulated game

because F is a pseudo-random function family and a strong randomness extractor. Therefore, if A

wins RAKE-1 against Π′ with high probability by breaking the session between U∗ and V ∗, B wins

RAKE-2 against Π with high probability by breaking the same session.

Proof: By way of contradiction, let A be an adversary that can break Π′ in the Reset-2 model. We

distinguish two cases.

Case 1: the instance input by A into the Test query has a partner instance. In this case, we follow

the same method as in Theorem 1’s proof. We construct a restricted adversary A1, from A, against

Π′ as follows. After the initialization phase, A1 outputs two distinct numbers l and l′ such that

the target session is between the l-th and l′-th instances (let these instances be (U∗, i∗) and (V ∗, j∗)

respectively). A1 now simulates RAKE-2 for A as follows. A1 answers all the queries made by A

using its own oracles. Let E denote the event that A invokes the Test query with input (I∗, c∗) such

that (I∗, c∗) = (U∗, i∗) or (V ∗, j∗) . If E does not occur, then A1 inputs a random bit to the Finalize

procedure and aborts. If E occurs, then A1 invokes the its own Test oracle-query with the same input

and returns the response it gets to A. Finally, when A inputs a bit b′ to the Finalize procedure, A1

also inputs b′ to the Finalize procedure and aborts.

Let q be the total number of NewInstance queries made by A. Observe that if E does not occur, the

probabilty of A1 winning RAKE-2 against Π′ is 0.5. Moreover, the instances l, l′ are chosen randomly

by A1, so Pr[E]= 1
q(q−1) . Therefore

Advrake-2
Π′,A1

(n) = Pr[RAKE-2Π′,A1(n)→ true|E]Pr[E] + Pr[RAKE-2Π′,A1(n)→ true|¬E]Pr[¬E]− 1

2

= Pr[RAKE-2Π′,A1(n)→ true|E]Pr[E] +
1

2
(1− Pr[E])− 1

2

= (Pr[RAKE-2Π′,A1(n)→ true|E]− 1

2
)Pr[E]

≥ (Pr[RAKE-2Π′,A(n)→ true]− 1

2
)Pr[E] ∵ if E occurs and A wins, then A1 also wins

=
1

q(q − 1)
Advrake-2

Π′,A (n) (3)

Now we modify RAKE-2 for Π′ to a new game G1 such that in the instance (U∗, i∗), the output

of the function fkU∗ (.) is replaced with a truly random function RF(.), where kU∗ is the key used by

U∗ in RAKE-2 and fkU∗ (.) ∈ F. Call this game G1.

Claim 2.1: The difference between A1’s advantages in RAKE-2 and G1 is negligible.

Proof: We show that if this difference is non-negligible, then we can construct an adversary D such

that Advprf
F,D(n) is non-negligible, therefore it can break the pseudo-random function family and strong

24

randomness extractor.

Let D be an adversary against F with access to an oracle O, which is either a truly random function

RF(.) or fk(.) ∈ F. D wishes to determine which of these is O. To achieve this goal, D simulates

RAKE-2 for A1 by using A1’s oracles to answer all of A1’s queries, except that D simulates the function

fkU∗ (.) of U∗ by asking its own oracle O. If A1 wins RAKE-2, D outputs 1 and aborts, otherwise

D aborts without any output. Since F is a pseudo-random function family as well as a (m, ε)-strong

randomness extractor, we have Advsre
F,D(n) ≤ ε. By (1),

Advsre
F,D(n) = Pr[Dfk(.)(1n) = 1]− Pr[DRF(.)(1n) = 1]

ε ≥ Pr[A1wins the game|O = fk(.)]− Pr[A1wins the game|O = RF]

= Pr[RAKE-2Π′,A1(n)→ true]− Pr[G1
Π′,A1

(n)→ true]

= Advrake-2
Π′,A1

(n)−AdvG
1

Π′,A1
(n).

So if the difference between A1’s advantages in the two games is non-negligible, then D has a

non-negligible advantage in breaking F, a contradiction.

Now we modify G1 for to a new game G2 such that in the instance (V ∗, j∗), the output of the

function fkV ∗ (.) is replaced with a truly random function RF(.), where kV ∗ is the key used by V ∗ in

G1 and fkV ∗ (.) ∈ F. Call this game G2.

Claim 2.2: The difference between A1’s advantages in G1 and G2 is negligible.

Proof: We show that if this difference is non-negligible, then we can construct an adversary D such

that Advsre
F,D(n) is non-negligible, therefore it can break F.

Let D be an adversary against F with access to an oracle O, which is either a truly random function

RF(.) or fk(.) ∈ F. D wishes to determine which of these is O. To achieve this goal, D simulates G1

for A1 by using A1’s oracles to answer all of A1’s queries, except that D simulates the function fkV ∗ (.)

of V ∗ by asking its own oracle O. If A1 wins G1, D outputs 1 and aborts, otherwise D aborts without

any output. By (1), we have

Advsre
F,D(n) = Pr[Dfk(.)(1n) = 1]− Pr[DRF(.)(1n) = 1]

ε ≥ Pr[A1wins the game|O = fk(.)]− Pr[A1wins the game|O = RF]

= Pr[G1
Π′,A1

(n)→ true]− Pr[G2
Π′,A1

(n)→ true]

= AdvG
1

Π′,A1
(n)−AdvG

2

Π′,A1
(n).

So if the difference between A1’s advantages in the two games is non-negligible, then D has a

non-negligible advantange in breaking the pseudo-random function family, a contradiction.

Now given an adversary A1 against Π′ in G2, construct an adversary B against Π in RAKE-2.

B corrupts all the parties in U , selects kJ ∈ K for all J ∈ U and simulates the game G2 for A1 as

follows. For all the queries made by A1 related to instances other than the l-th and l′-th instances,

B computes the response itself. For queries relates to l-th and l′-th instances, B relays these queries

to its own oracle and returns to A1 the responses it receives. Finally when A1 inputs a bit b′ to the

Finalize procedure, B also inputs b′ to its own Finalize procedure and aborts.

25

The way B simulates G2 for A1, there is no way for A1 to know that it is simulated. Also, A1

and B are attacking the same session, so if A1’s input to the Test query clears all the if-conditions in

the Finalize procedure of G2, then B’s input to the Test query also clears all the if-conditions in the

Finalize procedure of RAKE-2. So the probability of B winning RAKE-2 is at least the probability of

A1 winning G2. Hence

Advrake-2
Π,B (n) = Pr[RAKE-2Π,B(n)→ true]− 1

2

≥ Pr[G2
Π′,A1

(n)→ true]− 1

2

= AdvG
2

Π′,A1
(n)

≥ AdvG
1

Π′,A1
(n)− ε by Claim 2.2

≥ Advrake-2
Π′,A1

(n)− 2ε by Claim 2.1

≥ 1

q(q − 1)
Advrake-2

Π′,A (n)− 2ε by (3)

By assumption, Advrake-2
Π′,A (n) is non-negligible, so there exists a positive integer c such that |Advrake-2

Π′,A (n)|
≥ 1

nc for sufficiently large n. Since ε is negligible, we have

|Advrake-2
Π,B (n)| ≥ 1

q(q−1) |Advrake-2
Π′,A (n)| ≥ 1

q(q−1)
1
nc ≥ 1

na for a sufficiently large a. So Advrake-2
Π,B (n) is

non-negligible, a contradiction. This completes Case 1.

Case 2: the instance input by A into the Test query has no partner instance. In this case, similar

to Case 1, we first define a restricted adversary A1 that outputs an integer l and an identity V ∗ after

the Initialize phase such that A1 inputs the l-th instance (denoted by (U∗, i∗)) in the Test query and

pidi
∗
U∗ = V ∗. A1 now simulates RAKE-2 for A as follows. A1 answers all the queries made by A using

its own oracles. Let E denote the event that A invokes the Test query with input (I∗, c∗) such that

(I∗, pidc
∗
I∗) = (U∗, V ∗) . If E does not occur, then A1 inputs a random bit to the Finalize procedure

and aborts. If E occurs, then A1 invokes the its own Test oracle-query with the same input and returns

the response it gets to A. Finally, when A inputs a bit b′ to the Finalize procedure, A1 also inputs b′

to the Finalize procedure and aborts.

Let q be the total number of NewInstance queries made by A and let m = |U|. Since the instance

(U∗, i∗) and ID V ∗ are chosen randomly by A1, Pr[E]= 1
mq . Then by analysis exactly the same as that

in Case 1, we have
Advrake-2

Π′,A1
(n) ≥ 1

mq
Advrake-2

Π′,A (n). (4)

We modify RAKE-2 to a new game G1 such that in the instance (U∗, i∗), we replace the function

fkU∗ (.) by a truly random function. Then by the same analysis as that in Case 1, we have

AdvG
1

Π′,A1
(n) ≥ Advrake-2

Π′,A1
(n)− ε. (5)

Next, we modify G1 to a new game G2 such that we replace the function fkU∗ (.) by a truly random

function. Then by the same analysis as that in Theorem 1, we have

AdvG
2

Π′,A1
(n) ≥ AdvG

1

Π′,A1
(n)−Advprf

F,D(n). (6)

26

Finally, given an adversary A1 against protocol Π′ in game G2, we construct another adversary

B against Π in RAKE-2 as follows. B corrupts all the users in the set U\{V ∗} and learns their

corresponding long-lived private keys. B also chooses kJ ∈ K for all J ∈ U\{V ∗}. B answers itself all

the queries made by A except the following:

1. For all the queries related to the instance (U∗, i∗) including the Test query, B relays the queries

to its own oracle and returns to A1 the responses it receives.

2. For all the queries related to user V ∗, B relays the queries to its own oracle and returns to A1

the responses it receives. Note that A1 never makes a Corrupt query on V ∗.

At the end, when A1 inputs a bit b′ to the Finalize procedure and aborts, B also inputs b′ to its

Finalize procedure and aborts. Then, we have

Advrake-2
Π,B (n) = Pr[RAKE-2Π,B(n)→ true]− 1

2

≥ Pr[G2
Π′,A1

(n)→ true]− 1

2

= AdvG
2

Π′,A1
(n)

≥ AdvG
1

Π′,A1
(n)−Advprf

F,D(n) by (6)

≥ Advrake-2
Π′,A1

(n)− ε−Advprf
F,D(n) by (5)

≥ 1

mq
Advrake-2

Π′,A (n)− ε−Advprf
F,D(n) by (4)

By assumption, Advrake-2
Π′,A (n) is non-negligible, so by non-negligibility analysis similar to that in

Case 1 and in Theorem 1, Advrake-2
Π,B (n) is non-negligible, a contradiction. This completes Case 2 and

the proof of Theorem 2.

7 Two New Reset-1 and Reset-2 Secure Protocols

In this section, we modify the ISO procotol and the SKEME protocol [14] to obtain new protocols that

are Reset-1 and Reset-2 secure. Section 7.1 describes a new protocol based on ISO, gives the proof of

its Reset-2 security and then gives a transformed protocol that is Reset-1 secure as well. Section 7.2

describes a new protocol based on SKEME, gives the proof of its Reset-2 security and then gives a

transformed Reset-1 secure protocol. We begin with some definitions.

A digital signature scheme DS, which consists of a signing algorithm DS.Sign and a verification

algorithm DS.Verify, is a Deterministic Digital Signature Scheme if DS.Sign is deterministic.

Any randomized digital signature scheme can be converted to a deterministic one as follows: the signing

key is expanded to include a key k′ which is chosen uniformly at random from the key space of the

pseudo-random function family F′. To sign a message m, we first compute random coins r = f ′k′(m),

where f ′k′ ∈ F′, and then invoke the (randomized) signing algorithm DS.Sign with random coins r.

A digital signature scheme DS is Existentially Unforgeable under Adaptive Chosen Mes-

sage Attacks (i.e. it is uf-cma) if any adversary who is given q valid (message, signature) pairs cannot

27

generate a (q + 1)’th valid pair without knowing the secret signing key or without using the signing

algorithm. More formally, DS is uf-cma, if for any polynomial time algorithm F ,

Advuf-cma
DS,F (n) =Pr

[
(pk, sk) = DS.SKG(1n), (m∗, σ∗)→ FDS.Sign(sk,.)(pk) :

DS.Verify(pk,m∗, σ∗) = 1 ∧ F has never queried DS.Sign(sk,m∗)]

is negligible.

The Decisional Diffie-Hellman (DDH) Assumption says that for any polynomial time algo-

rithm F ,

AdvDDH
F (n) = Pr[F (1n, g, ga, gb, Z) = 1|Z = gab]− Pr[F (1n, g, ga, gb, Z) = 1|Z = gr]

is negligible, where a, b, r are randomly selected from Zp and p is a prime. Simply put, the DDH

assumption means that given the values g, ga, gb ∈ Zp, an adversary cannot determine with high

probability whether some number Z ∈ Zp equals gab or not.

A Public Key Encryption Scheme PKE consists of three algorithms. The key generation

algorithm PKE .SKG(1n) takes a security parameter n as input and outputs a public/secret key pair

(pk, sk). The encryption algorithm PKE .Enc(pk,m) takes the public key and a message as input

and outputs a ciphertext c. The decryption algorithm PKE .Dec(sk, c) takes the secret key and a

ciphetext as input and outputs m or ⊥ (which indicates decryption failure). A public key encryption

scheme PKE is secure under adaptive Chosen Ciphertext Attacks (CCA) if for any PPT adversary

A = (A1, A2),

Advcca
PKE,A(n) =Pr

[
(pk, sk)← PKE .SKG(1n), (x0, x1, δ)← A

PKE.Dec(sk,.)
1 (pk), b

$←− {0, 1},

y ← PKE .Enc(pk, xb), b
′ ← A

PKE.Dec(sk,.)
2 (pk, x0, x1, δ, y) : b′ = b

]
− 1

2

is negligible, where |x0| = |x1|, and A2 is not allowed to make a decryption query with input y. Simply

put, the adversary A is given access to an encryption oracle and a decryption oracle and he may

perform any number of encryption or decryption operations on arbitrary plaintexts and ciphertexts.

The adversary chooses two distinct plaintexts x0 and x1 and sends them to a challenger, who selects

a bit b randomly, encrypts xb and sends the result y back to A. A then performs as many decryptions

and encryptions as it wants, except using the decrypt query on y. It then outputs a bit b′, which is

his guess for the value of b. The scheme is secure under adaptive CCA if A cannot correctly guess the

value of b with high probability.

A Message Authentication Code scheme MAC with key space K consists of two algorithms.

MAC(K,m) is a message authentication algorthm that takes a key K ∈ K and a message m as input

and returns an authentication tag τ . MAV(K,m, τ) is a verification algorithm that takes a key K ∈ K,

a message m, and an authentication tag τ as input. It returns 1 if τ = MAC(K,m) and 0 otherwise. A

message authentication code schemeMAC is secure under adaptive Chosen Message Attacks (CMA),

if for any polynomial time algorithm A,

Advcma
MAC,A(n) =Pr

[
K

$←− K, (m∗, τ∗)← AMAC(K,.)(1n) :

MAV(K,m∗, τ∗) = 1 ∧A has never queried MAC(K,m∗)]

28

is negligible. Simply put, given a key K ∈ K, the goal of the adversary A is to produce an authenti-

cation tag τ∗ on a message m∗ without quering MAC, such that MAV accepts this tag and outputs 1.

The scheme is secure under adaptive CMA if A cannot succeed with high probability.

7.1 An ISO-based Reset-1 and Reset-2 Secure Protocol

We saw in Section 5.1 that the ISO protocol (Figure 1) is insecure under both the attacks. Yang et

al. [18] made two modifications to it and called the resulting protocol the ISO-R2 protocol, given in

Figure 6.

Figure 6: The ISO-R2 Protocol (Screenshot from page 15 [18]

Modification # 1: A role indicator (‘0’ for responder and ‘1’ for initiator) is added into the message

signed by each user. This is to prevent the following interleaving attack when the session ID is defined

as the concatenation of the random group elements α and β sent by the intiator and the responder.

1. The adversary D corrupts A and then activates a new session, say Session i, between A (initiator)

and B (responder).

2. After receiving the message (A,α) from A, D activates another session, say Session j, between B

(initiator) and A (initiator).

3. After receiving the message (B, β) from B in Session j, D sends (A,α,DS.Sign(skA, β, α,B)) back

to B in Session j.

4. B then responds to D with (B,DS.Sign(skB, α, β,A)) and accepts the Session j with sid = β||α.

5. In Session i, D sends (B, β,DS.Sign(skB, α, β,A)) to A.

6. A responds to D in Session i with (A,DS.Sign(skA, β, α,B)) and accepts this session with sid =

α||β.

It can be seen that A and B agree with the same session key, but under different session IDs, which

is a problem. One way to do this, as is done in ISO-R2, is to add a role indicator so that an adversary

who initiates two sessions between the same users with different roles cannot copy messages from one

session to the other.

Modification # 2: To prevent the Reset-2 attack described in Section 5.1, the signature scheme

used is a deterministic one. This way, a user is prevented from signing two different messages with

the same signing key.

29

The next theorem shows that ISO-R2 is a Reset-2 secure protocol.

Theorem 3: The ISO-R2 protocol is secure in the strong-corruption Reset-2 model if the signing

algorithm DS is a uf-cma-secure deterministic digital signature scheme, and the DDH assumption

holds in the underlying group.

Proof Sketch: By way of contradiction, we assume that there exists an adversary A who breaks the

ISO-R2 protocol under Reset-2 attack. We then define a restricted adversary A1, who simulates all

the RAKE-2 queries honestly for A, except that if A invokes the Test query with an instance that has

no partner instance, A1 aborts without any output. Let E be the event that the instance input by A

into the Test query has no partner instance. We show that Pr[E] is negligible, otherwise we can break

DS under adaptive CMA. This proves that the difference between the advantages of A and A1 in

RAKE-2 is negligible. We then define a restricted adversary A2 from A1 that guesses the input of the

Test query invoked by A1. We create an equality relating the advantages of A1 and A2 in RAKE-2.

Finally, we modify RAKE-2 to get a new game G1. We then show that the advantage of A2 in G1 is

similar to that of A2 in RAKE-2, otherwise the DDH property is violated. Putting together all the

inequalities, we arrive at a contradiction.

Proof: Suppose by way of contradiction that A is an adversary who breaks the ISO-R2 protocol

with non-negligible probability. Define a restricted adversary A1 from A against ISO-R2 in the game

RAKE-2 as follows. A1 honestly answers all the queries made by A using its own oracles, except that

when A makes the Test query with an input instance that has no partner instance, A1 aborts without

any output. When A inputs a bit b′ to the Finalize procedure, so does A1 and aborts.

We say that a ‘Forge’ event occurs if in the game, A generates a message-signature pair (m∗, σ∗)

such that

- there exists a user I ∈ U such that true → DS.Verify(pkI ,m
∗, σ∗),

- user I is not corrupted at the time A generates (m∗, σ∗), and

- user I has never generated a signature on M∗.

Let E denote the event that A invokes the Test query with an instance (U∗, i∗) that has no partner

instance. If E happens, then (U∗, i∗) generates a session key with some user V ∗ that has no partnering

instance with (U∗, i∗). Then A must have posed as V ∗ to make (U∗, i∗) accept and generate a session

key. This implies that A forged V ∗’s signature. So if event E occurs, event F also occurs. Hence

Pr[E] ≤ Pr[Forge]. On the other hand if E does not occur, then A1 and A are exactly the same,

so Advrake-2
ISO-R2,A(n) − Advrake-2

ISO-R2,A1
(n) = 0 ≤ Pr[E]. If E occurs, then Advrake-2

ISO-R2,A1
(n) = −0.5, so

Advrake-2
ISO-R2,A(n)−Advrake-2

ISO-R2,A1
(n) ≤ 0 ≤ Pr[E]. Combining these results, we have

Advrake-2
ISO-R2,A(n)−Advrake-2

ISO-R2,A1
(n) ≤ Pr[Forge]. (7)

Claim 3.1: Pr[Forge] is negligible.

Proof: Suppose for contradiction that Pr[Forge] is non-negligible. We show that DS is not uf-cma

secure. Given the adversary A as above, we construct a signature forger X as follows. X is given a

public key pk where (pk, sk) ← DS.SKG(1n), and has access to a signing oracle DS.Sign(sk, .). X’s

30

goal is to generate a signature using sk that has not been generated by the signing oracle, and is

verifiable by pk. X randomly selects a user U ∈ U and assigns pkU = pk. Then X generates all the

long-lived keys for all the users in U\{U}. Now X simulates RAKE-2 for A. If a Forge event occurs in

the simulation and I = U , then X outputs this forgery by A and aborts. Let m be the total number

of users in the network, so Pr[I = U]=1/m. Thus

Advuf-cma
DS,F (n) ≥ Pr[Forge]× Pr[I = U]

=
1

m
Pr[Forge].

This implies that Advuf-cma
DS,F (n) is non-negligible, a contradiction.

Now Pr[Forge] is negligible, so the difference between the advantages of A and A1 in RAKE-2 are

negligible. By the inequality derived in Claim 3.1 and (7), we have

Advrake-2
ISO-R2,A1

(n) ≥ Advrake-2
ISO-R2,A(n)−mAdvuf-cma

DS,F (n). (8)

Now we construct a restricted adversary A2 from A1, which outputs two integers l and l′ after the

Initialize phase. It simulates RAKE-2 for A1 and answers all its queries honestly using its own oracles,

except that if A1 invokes the Test query with a session not between the l-th and l′-th instances, A2

inputs a random bit to the Finalize procedure and aborts. Let q be the total number of new instance

queries made by A1. Then by analysis exactly similar to the one in Theorem 2 Case 1, we have

Advrake-2
ISO-R2,A2

(n) ≥ 1

q(q − 1)
Advrake-2

ISO-R2,A1
(n). (9)

Now we modify RAKE-2 to obtain a new game G1 as follows. In G1, the simulator picks a random

key (i.e. a random element in the underlying group), and sets it as the session key of the l’th and l′-th

instances.

Claim 3.2: The difference between A2’s advantages in RAKE-2 and G1 is negligible.

Proof: We show that if this difference is non-negligible, then we can construct an adversary D who

breaks the DDH assumption.

Let D be an adversary against the DDH assumption. D is given a tuple {g,X = ga, Y = gb, Z}
and D’s goal is to guess whether Z = gab or Z is a random group element. D honestly simulates

RAKE-2 for A2 except that D simulates the l-th instance by settings the ephemeral public key as X

and simulates the l′-th instance by setting the ephemeral public key as Y . D also sets Z as the session

key of the l-th and l′-th instances. If A2 wins the game, D outputs 1 and aborts. Otherwise D aborts

without any input. Then

AdvDDH
D (n) = Pr[A2 wins the game |Z = gab]− Pr[A2 wins the game |Z = gr]

= Pr[RAKE-2ISO-R2,A2(n)→ true]− Pr[G1
ISO-R2,A2

(n)→ true]

= Advrake-2
ISO-R2,A2

(n)−AdvG
1

ISO-R2,A2
(n)

This implies that if the difference between A2’s advantage in RAKE-2 and in G1 is non-negligible,

then AdvDDH
D (n) is non-negligible, which is a contradiction.

31

Finally, note that in G1, A2 can win the game only by guessing randomly, because the two choices

for the session key are equally random. Hence AdvG
1

ISO-R2,A2
(n) = 0. Combining this with (8), (9) and

Claim 3.2, we get

Advrake-2
ISO-R2,A(n) ≤ mAdvuf-cma

DS,F (n) + q(q − 1)AdvDDH
D (n).

Since the quantity on LHS is non-negligible, at least one of the Adv terms on RHS is non-negligible,

a contradiction. This completes the proof of Theorem 3.

We can now apply the transformation to ISO-R2 to obtain a Reset-1 and Reset-2 secure protocol

ISO-R, given the security of the digital signature scheme and the DDH assumption. The transformed

protocol is shown in Figure 7. It can be seen that a is chosen in the initialization phase as part

of A’s secret long-lived key. During the protocol execution, when A chooses the random coins x̃, A

re-randomizes them by passing them through the function Fa to obtain new random coins x which

are used throughout the protocol.

Figure 7: The ISO-R Protocol (Screenshot from page 18 [18]

7.2 A SKEME-based Reset-1 and Reset-2 Secure Protocol

The SKEME protocol is given in Figure 8. It uses an encryption scheme and a message authentication

code scheme to achieve authentication and data integrity.

Figure 8: The SKEME Protocol (Screenshot from page 19 [18]

32

Since H is a public hash function, this protocol is Reset-1 insecure because the adversary knows

the values of x and y and can trivially compute H(gxy). It is also insecure in the strong-corruption

Reset-2 model. The attack is given below.

- The adversary D activates user A to start a new session with user B.

- D relays the message cA, α from A to B.

- Upon receiving the message cB, β, τB from B, D makes a RevealState query to B and obtains the

key K0.

- D generates β′ ← gy
′

where y′ is chosen by the adversary, τ ′B ← MACK0(α, β′, B,A), and sends a

message (cB, β
′, τ ′B) to A.

- Since τ ′B is generated using the correct key K0, A accepts the session and outputs the session key

H(gxy).

In this attack, the RevealState query allows D to successfully pose as B and this makes the protocol

insecure. Yang et al. proposed the PKEDH-R2 protocol (Figure 9) that is a modified version of

SKEME. Here, a role indicator (‘0’ for responder, ‘1’ for initiator) is added to the message being

MAC-ed and the keying system for MAC is changed. Theorem 4 shows its security in the weak-

corruption Reset-2 model under certain assumptions.

Figure 9: The PKEDH-R2 Protocol (Screenshot from page 2- [18]

Theorem 4: The PKEDH-R2 protocol is secure in the weak-corruption Reset-2 model if PKE is

adaptive CCA secure,MAC is adaptive CMA secure, and the DDH assumption holds in the underlying

group.

Proof Sketch: By way of contradiction, we assume that there exists an adversary A who breaks the

PKEDH-R2 protocol under Reset-2 attack. We then define a restricted adversary A1, who simulates

all the RAKE-2 queries honestly for A, except that if A invokes the Test query with an instance that

has no partner instance, A1 aborts without any output. Let E be the event that the instance input

by A into the Test query has no partner instance. We show that Pr[E] is negligible, otherwise we

can break PKE under adaptive CCA or MAC under adaptive CMA. This in turn proves that the

difference between the advantages of A and A1 in RAKE-2 is negligible. We then define a restricted

adversary A2 from A1 that guesses the input of the Test query invoked by A1. Similar to the proof

33

of Theorem 3, we create an inequality relating the advantages of A1 and A2 in RAKE-2. Finally, we

modify RAKE-2 to get a new game G1. We then show that the advantage of A2 in G1 is similar to

that of A2 in RAKE-2, otherwise the DDH property is violated. Putting together all the inequalities,

we arrive at a contradiction.

Proof: Before proceeding with the proof, we define an Encryption Aided Forger F . Let (pk, sk) ←
PKE .SKG(1n), and c∗ ← PKE .Enc(pk, S,N∗), where S is a strong chosen by F , and N∗ is randomly

selected from the key space ofMAC and unknown to F. F is given pk, c∗ and has access to two oracles:

a decryption oracle Osk(.) which decrypts ciphertexts different from c∗, and an ON∗(.) oracle which

on input m returns MACN∗(m). F ’s goal is to output m∗, MACN∗(m
∗) where F has never queried

the oracle ON∗(.) on message m∗.

Suppose by way of contradiction that A is an adversary who breaks the PKEDH-R2 protocol with

high probability. Define a restricted adversary A1 from A against PKEDH-R2 in the game RAKE-2

as follows. A1 honestly answers all the queries made by A using its own oracles, except that when

A makes the Test query with an input instance that has no partner instance, A1 aborts without any

output. When A inputs a bit b′ to the Finalize procedure, so does A1 and then it aborts. Let E be

the event that the instance input by A into the Test query has no partner instance. If E occurs, we

construct an Encryption Aided Forger F as follows.

F randomly selects two parties U∗, V ∗ ∈ U , and generates all the long-lived keys for other users

in the set U\{V ∗}. Let q denote the maximum number of NewInstance queries made by A. F also

selects an integer l randomly from the set {1, ..., q}. Then F asks its challenger with input S = U∗

and gets back the challenge pk, c∗ = PKE .Enc(pk, U∗, N∗). F sets pkV ∗ = pk. F ’s goal is to make A

output MACN∗(...). To do that, F simulates the game RAKE-2 for A honestly, except that

- if A does not make a Test query with an instance of U∗, F aborts without any output,

- if pidi
∗
U∗ 6= V ∗, then F aborts without any output (this and the previous item ensure that the Test

session is between the i∗-th instance of U∗ and user V ∗),

- if (U∗, i∗) is not the l-th instance, G aborts without any output,

- if A makes a Corrupt query on V ∗, F aborts without any output (this is because V ∗’s secret key is

sk, which is known only to F ’s challenger and not to F),

- for the l-th instance (i.e. (U∗, i∗)), F sets cU∗ = c∗, generates the ephemeral public and secret key

pair (α, x) or (β, y), uses skU∗ to get (pkU∗ , V
∗, N) ← PKE .Dec(skU∗ , cV ∗) and then generates the

tag τU∗ honestly using N (note that N is KV ∗ and N∗ is KU∗),

- if A sends a message (c, ...) to V ∗ where c 6= c∗, F makes a query to its decryption oracle Osk(.) on

input c, and proceeds normally after getting back the response from Osk(.),
- if A sends a message (c∗, ...) to V ∗, F queries its oracle ON∗(.) to generate a response tag (i.e. a

MAC with key N∗),

- when A sends a tag MACN∗(...) to (U∗, i∗), the message MAC-ed here is different from all the

messages MAC-ed previously because of the different role indicator. F outputs this MAC tag and

the corresponding message as a successful forgery and aborts.

34

Let m be the total number of users in the network. Then

Pr[F succeeds] ≥ Pr[E]× Pr[choosing U∗, V ∗]× Pr[choosing l-th instance]

=
1

m(m− 1)q
Pr[E] (10)

Let ε =Pr[F succeeds]. Now given an Encryption Aided Forger F , we construct another adversary

D against PKE in the IND-CCA game. D is given a public key pk and has access to a decryption

oracle. D runs F as follows. When F asks for a challenge with input S, D randomly selects two

numbers N0 and N1, and asks its challenger with input S||N0 and S||N1. After getting back the

challenge c∗, D’s goal is to determine whether c∗ is the encryption of S||N0 or S||N1. D sets F ’s

challenge to be pk, c∗. When F makes a MAC query on a message m, D returns MACN0(m) to F .

Finally, if F successfully makes a forgery MACN0(m∗), then D outputs 0, indicating that c∗ is the

encryption of S||N0. Otherwise, if F fails to produce a forgery, D outputs 1, signifying that c∗ is the

encryption of S||N1. Let b be the bit output by D. Note that Pr[b = 0]=Pr[b = 1]=0.5. So we have

Advcca
PKE,D(n) = Pr[D outputs 0 |b = 0]Pr[b = 0] + Pr[D outputs 1 |b = 1]Pr[b = 1]− 1

2

=
1

2
Pr[F succeeds |b = 0] +

1

2
Pr[F fails |b = 1]− 1

2

=
1

2
Pr[F succeeds |b = 0] +

1

2
(1− Pr[F succeeds |b = 1])− 1

2

=
1

2
(Pr[F succeeds |b = 0]− Pr[F succeeds |b = 1])

=
1

2
(ε−Advcma

MAC,F (n)) (11)

The last equality comes from the fact that when b = 0, F is in the Encryption Aided Forger game, and

when b = 1, c∗ is independent of N0 and F is in the normal chosen message attack game. Combining

(10) and (11), we get

Pr[E] ≤ m(m− 1)q(2Advcca
PKE,D(n) + Advcma

MAC,F (n). (12)

This equation implies that if Pr[E] is non-negligible, one can break PKE orMAC, a contradiction.

Therefore, we can assume with high probability that E does not occur, i.e., A invokes the Test query

with an instance that has a partner instance.

Now, if E does not happen, A1 and A are the same, so we have

Advrake-2
ISO-R2,A(n)−Advrake-2

ISO-R2,A1
(n) ≤ Pr[E].

Combining this with (12), we get

Advrake-2
ISO-R2,A(n)−Advrake-2

ISO-R2,A1
(n) ≤ m(m− 1)q(2Advcca

PKE,D(n) + Advcma
MAC,F (n)). (13)

We now proceed in exactly the same fashion as in the proof of Theorem 3. Given A1, we define

another restricted adversary A2 which outputs two integers l and l′. Then we get

Advrake-2
ISO-R2,A2

(n) ≥ 1

q(q − 1)
Advrake-2

ISO-R2,A1
(n). (14)

35

Now we modify RAKE-2 to obtain a new game G1, in which the simulator picks a random element

of the underlying subgroup and sets it as the session key of the l’th and l′-th instances. Then by the

second claim in the proof of Theorem 3, we get

AdvDDH
D (n) = Advrake-2

ISO-R2,A2
(n)−AdvG

1

ISO-R2,A2
(n) (15)

Finally, A2 can win G1 only by guessing randomly, because the two choices for the session key are

equally random. Hence AdvG
1

ISO-R2,A2
(n) = 0. We now combine (13), (14) and (15).

Advrake-2
ISO-R2,A(n) ≤ m(m− 1)q(2Advcca

PKE,D(n) + Advcma
MAC,F (n)) + Advrake-2

ISO-R2,A1
(n)

≤ m(m− 1)q(2Advcca
PKE,D(n) + Advcma

MAC,F (n)) + q(q − 1)Advrake-2
ISO-R2,A2

(n)

≤ m(m− 1)q(2Advcca
PKE,D(n) + Advcma

MAC,F (n)) + q(q − 1)AdvDDH
D (n)

Since the quantity on LHS is non-negligible by assumption, at least one of the three Adv terms on

RHS is non-negligible, a contradiction. This completes the proof of Theorem 4.

We can now apply the transformation to PKEDH-R2 to obtain a Reset-1 and Reset-2 secure

protocol PKEDH-R, given the security of the encryption scheme, message authentication code scheme

and the DDH assumption. The PKEDH-R protocol is shown in Figure 10. It can be seen that a is

chosen in the initialization phase as part of A’s secret long-lived key. During the protocol execution,

when A chooses the random coins x̃, A re-randomizes them by passing them through the function Fa

to obtain new random coins x,KA, r which are then used throughout the protocol.

Figure 10: The PKEDH-R Protocol (Screenshot from page 21 [18]

8 Conclusion

In this report, we studied in complete detail the research paper published by Yang et al. [18] in

2011. This paper initiates the formal study on Authenticated Key Exchange under bad randomness.

Two possible scenarios are considered, where the randomness of a protocol is directly or indirectly

36

controlled by the adversary, causing the session keys or the secret keys of participants to be leaked.

Under both the scenarios, it is shown that many widely known AKE protocols are insecure. Finally,

a way to transform an insecure protocol to a secure one is described, followed by concrete examples.

Our contribution to Yang et al. ’s work is that we have implemented an attack on HMQV protocol

given by Menezes and Ustaoglu [16]. In addition, we give the proofs and the computational/logical

details that have been omitted in the original work.

37

References

[1] Entity authentication mechanisms - Part 3: Entity authentication using asymmetric techniques.

ISO/IEC IS 9798-3, 1993.

[2] Digital signature standard (DSS). NIST FIPS PUB 186-3, Jun 2009.

[3] W. Aiello, S.M. Bellovin, M. Blaze, R. Canetti, J. Ioannidis, A.D. Keromytis, and O. Reingold.

Just fast keying: Key agreement in a hostile internet. ACM Trans. Inf. Syst. Secur., 7(2):242–273,

2004.

[4] M. Bellare, M. Fischlin, S. Goldwasser, and S. Micali. Identification protocols secure against reset

attacks. EUROCRYPT 2001, pages 495–511.

[5] R. Canetti and H. Krawczyk. Analysis of key exchange protocols and their use for building secure

channels. EUROCRYPT 2001, pages 453–474.

[6] R. Canetti and H. Krawczyk. Security analysis of IKE’s signature-based key-exchange protocol.

CRYPTO 2002, pages 143–161.

[7] A. Desai, A. Hevia, and Y. L. Yin. A practice-oriented treatment of pseudorandom number

generators. EUROCRYPT 2002, pages 368–383.

[8] R. Diestel. Graph Theory. Springer-Verlag Heidelberg, New York, third edition, 2005.

[9] Y. Dodis. Exposure-resilient cryptography. PhD Thesis, MIT, 2000.

[10] D. Eastlake, S. Crocker, and J. Schiller. IETF RFC 1750: Randomness Recommendations for

Security, 1994.

[11] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature

problems. CRYPTO’86, pages 186–194.

[12] H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. CRYPTO 2005, pages

546–566.

[13] H. Krawczyk. SIGMA: The ‘SIGn-and-MAc’ approach to authenticated Diffie-Hellman and its

use in the IKE protocols. CRYPTO 2003, pages 400–425.

[14] H. Krawczyk. SKEME: A versatile secure key exchange mechanism for internet. NDSS, pages

114–127, 1996.

[15] T. Matthews. Suggestions for random number generation in software. RSA Laboratories Bulletin

1, January 1996.

[16] A. Menezes and B. Ustaoglu. On reusing ephemeral keys in Diffie-Hellman key agreement proto-

cols. IJACT, 2(2):154–158, 2010.

38

[17] T. Ristenpart and S. Yilek. When good randomness goes bad: Virtual machine reset vulnerabil-

ities and hedging deployed cryptography. Network and Distributed System Security Symposium,

2010.

[18] G. Yang, S. Duan, D.S. Wong, C.H. Tan, and H. Wang. Authenticated key exchange under bad

randomness. Proceedings of the 15th international conference on Financial Cryptography and

Data Security, pages 113–126, 2011.

39

	Introduction
	Motivation
	Project Goals and Layout
	Definitions and Security Models
	AKE Protocol Descriptions & the Notion of Non-negligibility
	Security Model for Reset-1 Attack
	Security Model for Reset-2 Attack
	Strong-Corruption Security Models for Reset-1 and Reset-2 Attacks

	Security Analysis of Existing Protocols
	Reset-1 and Reset-2 Attacks on the ISO Protocol
	Reset-1 and Reset-2 Attacks on the SIGMA Protocol
	Reset-2 Attack on the HMQV Protocol

	Transformation from Reset-2 Security to Reset-1 & Reset-2 Security
	Two New Reset-1 and Reset-2 Secure Protocols
	An ISO-based Reset-1 and Reset-2 Secure Protocol
	A SKEME-based Reset-1 and Reset-2 Secure Protocol

	Conclusion

